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• Here, density evolution is particularly simple: Track the average probability
p(l) of an erasure after l iterations.

• (l = 0): 0 1 0 e 1 0 1 e e 1 0 . . . p(0) = ε

• (l = 1): 0 1 0 0 1 0 1 1 e 1 0 . . . p(1) = ?
• . . .
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• Variable node (VN) update:

Lj→i = Lj +
∑

i′∈N(j)−{i}

Li′→j
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• p(l): probability that an outgoing VN message is an
erasure, with p(0) = ε

• q(l): probability that an outgoing CN message is an
erasure

• CN update (degree k):

q
(l) = 1 − (1 − p

(l−1))k−1

• VN update (degree k):

p
(l) = ε(q(l))k−1

• Averaged over all VNs and CNs (λ(x) is the VN degree
distribution, ρ(x) is the CN degree distribution):

p
(l) = ελ(1 − ρ(1 − p

(l−1)))
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Threshold Example (Capacity C = 0.5)

Example

• Regular (3, 6) LDPC block code ensemble, rate R = 1/2:

ρ(x) = x
5 λ(x) = x

2

• Threshold ε∗ = 0.429

Example

• Regular (5, 10) LDPC block code ensemble, rate R = 1/2:

ρ(x) = x
9 λ(x) = x

4

• Threshold ε∗ = 0.341
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Density Evolution for Protograph Ensembles

• Protograph = prototype graph

• Tanner graph of the code results from a copy-and-permute procedure that
preserves the degree distribution of all nodes

• Imposes structure on the resulting LDPC code ensemble

• Now the erasure probabilities are functions of the edges:

q
(l)(ei→j) = 1 −

∏

j′∈N(i)−{j}

(1 − p
(l−1)(ej′→i))

p
(l)(ej→i) = ε

∏

i′∈N(i)−{j}

q
(l)(ei′→j)
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• Rate loss due to termination (additional check nodes)

• Slight irregularities of the CN degrees at the beginning and end of the
protograph

• However, as the number of protograph copies L grows large, the code
becomes asymptotically regular and the rate loss becomes negligable
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• Based on (3,6) LDPC Block protograph (ε∗ = 0.429):

L RL ε∗
L εSh(RL)

5 0.300 0.587 0.700
10 0.400 0.504 0.600
20 0.450 0.488 0.550
40 0.475 0.488 0.525
∞ 0.500 0.488 0.500

8 / 11



Density Evolution LDPCC Thresholds Conclusion

Thresholds for Protograph-based LDPC Convolutional Codes

• Based on (3,6) LDPC Block protograph (ε∗ = 0.429):

L RL ε∗
L εSh(RL)

5 0.300 0.587 0.700
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• Based on (5,10) LDPC Block protograph (ε∗ = 0.341):

L RL ε∗
L εSh(RL)

5 0.100 0.625 0.900
10 0.300 0.512 0.700
20 0.400 0.499 0.600
40 0.450 0.499 0.550
∞ 0.500 0.499 0.500
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Erasure Probability Evolution at ε = 0.483, L = 20, (3,6) LDPC code
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• Same effect is also present for other channels, e.g., AWGN
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Thank you!
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