Agenda

• Welcome and introduction (Chairman)
• Presentation and mention of
 • Faculty Opponent: Rüdiger Urbanke
 • Evaluation Committee: Michael Lentmaier, Gianluigi Liva, Laurent Schmalen
 • Funding sources
 • Contributors to the thesis work
• Errata List
• Short introduction to the thesis work (Faculty Opponent)
• Presentation (25 min.)
• Discussion (60–90 min.)
• Questions and comments from the Evaluation Committee
• Questions from the audience
• Evaluation Committee meeting, decision and lunch (S2 lunch room)
Analysis and Design of Spatially-Coupled Codes with Application to Fiber-Optical Communications

Christian Häger

Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden
christian.haeger@chalmers.se

FORCE
Fiber-optic communications research center

PhD Seminar
May 30, 2016
Analysis and Design of Spatially-Coupled Codes with Application to Fiber-Optical Communications

Christian Häger

Many thanks to Alexandre Graell i Amat, Fredrik Brännström, Alex Alvarado, Erik Agrell, and Henry Pfister

Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden
christian.haeger@chalmers.se

PhD Seminar
May 30, 2016
Fiber-Optical Communications
Fiber-optical communications enables data traffic over very long distances connecting cities, countries, and continents.
Fiber-optical communications enables data traffic over very long distances connecting cities, countries, and continents.
Fiber-optical communications enables data traffic over very long distances connecting cities, countries, and continents.
Fiber-optical communications enables data traffic over very long distances connecting cities, countries, and continents.

Cinia opens subsea cable connecting Finland and Germany

Friday 20 May 2016 | 09:48 CET | News

Cinia Group announced the official opening and commercial availability of Cinia C-Lion 1, a new submarine cable system that connects Finland and Germany. The

Designed and commissioned by Cinia Group and built in partnership with Alcatel-Lucent Submarine Networks, the Cinia C-Lion1 cable system totals 1,200 kilometers in length and consists of eight optical fibre pairs.
Fiber-optical communications enables **data traffic over very long distances connecting cities, countries, and continents.**

Fiber-Optical Communications

Cinia opens subsea cable connecting Finland and Germany

Friday 20 May 2016 | 09:48 CET | News

Cinia Group announced the official opening and commercial availability of Cinia C-Lion 1, a new subsea cable system that connects Finland and Germany. The

Designed and commissioned by Cinia Group and built in partnership with Alcatel-Lucent Submarine Networks, the Cinia C-Lion1 cable system totals **1,200 kilometers** in length and consists of eight optical fibre pairs.
Fiber-Optical Communications
Fiber-Optical Communications

- Long distances result in significant signal attenuation
Fiber-Optical Communications

- Long distances result in significant signal attenuation
- Periodic amplification necessary, which leads to random signal distortions or noise
Fiber-Optical Communications

- Long distances result in significant **signal attenuation**
- Periodic amplification necessary, which leads to **random signal distortions** or **noise**

![Signal transmitted in Rostock](image-url)
Fiber-Optical Communications

- Long distances result in significant **signal attenuation**
- Periodic amplification necessary, which leads to **random signal distortions** or **noise**

![Waveform diagram](image)
Fiber-Optical Communications

- Long distances result in significant **signal attenuation**
- Periodic amplification necessary, which leads to **random signal distortions** or **noise**

![Waveform diagram](image.png)

signal transmitted in Rostock
Fiber-Optical Communications

- Long distances result in significant *signal attenuation*
- Periodic amplification necessary, which leads to *random signal distortions* or *noise*

![Diagram showing signal transmission and amplification in fiber optics](image-url)
Fiber-Optical Communications

- Long distances result in significant **signal attenuation**
- Periodic amplification necessary, which leads to **random signal distortions** or **noise**

Error-correcting codes are essential in modern fiber-optical communication systems to ensure reliable data transmission.
Error-Correcting Codes

communication channel

repeat several times

amplifier

optical fiber
Error-Correcting Codes

communication channel

repeat several times

amplifier

optical fiber

mathematical description of the transmission medium
Error-Correcting Codes

communication channel

mathematical description of the transmission medium
Error-Correcting Codes

0110

data bits

communication channel
Error-Correcting Codes

Data bits: 0110

communication channel

Received bits: 0100

Binary symmetric channel: each bit flipped with probability p.

Errors
Error-Correcting Codes

0110
data bits

communication channel
Error-Correcting Codes

0110
data bits

encoder

communication channel

decoder
Error-Correcting Codes

- Encoder: 0110
 - Data bits

- Encoder: 011010
 - Data
 - Parity

- Communication channel

- Decoder
Error-Correcting Codes

encoder

communication channel

decoder

data bits

data parity

received bits

errors
Error-Correcting Codes

encoder

communication channel

decoder

0110 data bits

011010 data parity

010010 received bits

0110 restored bits

0110 errors
Error-Correcting Codes

Requirements for Fiber-Optical Communications
Error-Correcting Codes

Requirements for Fiber-Optical Communications

- Very high throughputs (100 Gigabits per second or higher)
- Very high net coding gains (close-to-capacity performance)
- Very low bit error rates (below 10^{-15})
Error-Correcting Codes

Requirements for Fiber-Optical Communications

- Very high throughputs (100 Gigabits per second or higher)
- Very high net coding gains (close-to-capacity performance)
- Very low bit error rates (below 10^{-15})

Spatially-coupled codes are promising codes that can fulfill these requirements.
Error-Correcting Codes

Requirements for Fiber-Optical Communications

- Very high throughputs (100 Gigabits per second or higher)
- Very high net coding gains (close-to-capacity performance)
- Very low bit error rates (below 10^{-15})

Spatially-coupled codes are promising codes that can fulfill these requirements.

In this talk

1. Basics of spatially-coupled codes
2. Asymptotic analysis and design of deterministic codes
3. Designing spectrally-efficient fiber-optical systems
Codes on Graphs
Codes on Graphs

- Parity bits are formed by adding (modulo 2) subsets of data bits:

\[
\begin{array}{cccc}
C_1 & C_2 & C_3 & C_4 \\
0 & 1 & 1 & 0 \\
\end{array}
\]
Codes on Graphs

- Parity bits are formed by adding (modular 2) subsets of data bits:

\[c_1 + c_2 + c_3 = c_5 \]
\[c_2 + c_3 + c_4 = c_6 \]
Codes on Graphs

- Parity bits are formed by adding (modulo 2) subsets of data bits:

 \[c_1 + c_2 + c_3 = c_5 \]

 \[c_2 + c_3 + c_4 = c_6 \]

- Code representation via bipartite Tanner graph, where variable nodes represent code bits and check nodes represent parity-check equations
Codes on Graphs

- Parity bits are formed by adding (modulo 2) subsets of data bits:
 \[c_1 + c_2 + c_3 = c_5 \]
 \[c_2 + c_3 + c_4 = c_6 \]

- Code representation via bipartite **Tanner graph**, where variable nodes represent code bits and check nodes represent parity-check equations.
Codes on Graphs

- Parity bits are formed by adding (modulo 2) subsets of data bits:
 \[c_1 + c_2 + c_3 = c_5 \]
 \[c_2 + c_3 + c_4 = c_6 \]

- Code representation via bipartite **Tanner graph**, where variable nodes represent code bits and check nodes represent parity-check equations
- Code rate \(R = \frac{\text{number of data bits}}{\text{code length}} \)
low-density parity-check (LDPC) code
[Gallager, 1962]

- Parity bits are formed by adding (modulo 2) subsets of data bits:

 \[c_1 + c_2 + c_3 = c_5 \]

 \[c_2 + c_3 + c_4 = c_6 \]

- Code representation via bipartite Tanner graph, where variable nodes represent code bits and check nodes represent parity-check equations
- Code rate \(R = \text{number of data bits} / \text{code length} \)
Codes on Graphs

- Parity bits are formed by adding (modulo 2) subsets of data bits:
 \[c_1 + c_2 + c_3 = c_5 \]
 \[c_2 + c_3 + c_4 = c_6 \]
- Code representation via bipartite Tanner graph, where variable nodes represent code bits and check nodes represent parity-check equations.
- Code rate \(R = \text{number of data bits} / \text{code length} \)
- Introduce constraint nodes (or generalized check nodes)

low-density parity-check (LDPC) code
[Gallager, 1962]
Codes on Graphs

- Parity bits are formed by adding (modulo 2) subsets of data bits:
 \[c_1 + c_2 + c_3 = c_5 \]
 \[c_2 + c_3 + c_4 = c_6 \]

- Code representation via bipartite Tanner graph, where variable nodes represent code bits and check nodes represent parity-check equations

- Code rate \(R = \text{number of data bits} / \text{code length} \)

- Introduce constraint nodes (or generalized check nodes)
Spatially-Coupled Codes

Deterministic Codes

Spectrally-Efficient Systems

Conclusion

Codes on Graphs

low-density parity-check (LDPC) code

[Gallager, 1962]

- Parity bits are formed by adding (modulo 2) subsets of data bits:

 \[c_1 + c_2 + c_3 = c_5 \]
 \[c_2 + c_3 + c_4 = c_6 \]

- Code representation via bipartite Tanner graph, where variable nodes represent code bits and check nodes represent parity-check equations

- Code rate \(R = \text{number of data bits} / \text{code length} \)

- Introduce constraint nodes (or generalized check nodes)
Codes on Graphs

- Parity bits are formed by adding (modulo 2) subsets of data bits:
 \[c_1 + c_2 + c_3 = c_5 \]
 \[c_2 + c_3 + c_4 = c_6 \]

- Code representation via bipartite **Tanner graph**, where variable nodes represent code bits and check nodes represent parity-check equations.

- Code rate \(R = \) number of data bits / code length.

- Introduce **constraint nodes** (or **generalized check nodes**).
Codes on Graphs

- Parity bits are formed by adding (modulo 2) subsets of data bits:
 \[c_1 + c_2 + c_3 = c_5 \]
 \[c_2 + c_3 + c_4 = c_6 \]

- Code representation via bipartite Tanner graph, where variable nodes represent code bits and check nodes represent parity-check equations.

- Code rate \(R = \) number of data bits / code length.

- Introduce constraint nodes (or generalized check nodes).
Spatially-Coupled Codes

[Felström and Zigangirov, 1999], [Lentmaier et al., 2005], [Kudekar et al., 2011], ...
Spatially-Coupled Codes

[Felström and Zigangirov, 1999], [Lentmaier et al., 2005], [Kudekar et al., 2011], ...

Start with a regular ("uncoupled") code/graph
Spatially-Coupled Codes

[Felström and Zigangirov, 1999], [Lentmaier et al., 2005], [Kudekar et al., 2011], ...

Start with a regular ("uncoupled") code/graph
Spatially-Coupled Codes

[Felström and Zigangirov, 1999], [Lentmaier et al., 2005], [Kudekar et al., 2011], ...
Spatially-Coupled Codes

[Felström and Zigangirov, 1999], [Lentmaier et al., 2005], [Kudekar et al., 2011], …
Spatially-Coupled Codes

[Felström and Zigangirov, 1999], [Lentmaier et al., 2005], [Kudekar et al., 2011], …

[Diagram of spatial coupling]
Spatially-Coupled Codes

[Felström and Zigangirov, 1999], [Lentmaier et al., 2005], [Kudekar et al., 2011], …

Spatially position

1 2 3 4 5
Spatially-Coupled Codes

[Felström and Zigangirov, 1999], [Lentmaier et al., 2005], [Kudekar et al., 2011], ...
\textbf{Spatially-Coupled Codes}

[Felström and Zigangirov, 1999], [Lentmaier et al., 2005], [Kudekar et al., 2011], ...
Spatially-Coupled Codes

[Felström and Zigangirov, 1999], [Lentmaier et al., 2005], [Kudekar et al., 2011], …

known variable nodes \implies slight graph irregularity at the boundaries \implies better protection

Spatially position

[Diagram showing spatially-coupled codes with variable nodes and graph irregularities]
Decoding Wave Effect
Decoding Wave Effect

- Apply (suboptimal) **iterative** decoding, exchanging messages between variable and constraint nodes

![Graph](chart.png)
predicted bit error rate per spatial position
spatial position
Decoding Wave Effect

- Apply (suboptimal) **iterative** decoding, exchanging messages between variable and constraint nodes

![Graph](image_url)
Decoding Wave Effect

- Apply (suboptimal) **iterative** decoding, exchanging messages between variable and constraint nodes

predicted bit error rate per spatial position

\[l = 15 \]

spatial position
Decoding Wave Effect

- Apply (suboptimal) **iterative** decoding, exchanging messages between variable and constraint nodes

![Graph showing predicted bit error rate per spatial position](image)
Decoding Wave Effect

- Apply (suboptimal) **iterative** decoding, exchanging messages between variable and constraint nodes

predicted bit error rate per spatial position

spatial position

$l = 45$
Decoding Wave Effect

- Apply (suboptimal) **iterative** decoding, exchanging messages between variable and constraint nodes
Decoding Wave Effect

- Apply (suboptimal) iterative decoding, exchanging messages between variable and constraint nodes

predicted bit error rate per spatial position

spatial position

$l = 75$
Decoding Wave Effect

- Apply (suboptimal) **iterative** decoding, exchanging messages between variable and constraint nodes.
Decoding Wave Effect

- Apply (suboptimal) iterative decoding, exchanging messages between variable and constraint nodes
Decoding Wave Effect

- Apply (suboptimal) **iterative** decoding, exchanging messages between variable and constraint nodes
- **Successful decoding**

![Graph showing predicted bit error rate per spatial position](image-url)
Decoding Wave Effect

- Apply (suboptimal) *iterative* decoding, exchanging messages between variable and constraint nodes
- **Successful decoding** even for cases where decoding of “uncoupled” regular codes fails

![Graph showing predicted bit error rate per spatial position](chart.png)
Decoding Wave Effect

- Apply (suboptimal) **iterative** decoding, exchanging messages between variable and constraint nodes
- Successful decoding even for cases where decoding of “uncoupled” regular codes fails
- Performance can be as good as under **optimal** decoding [Kudekar et al., 2011], [Yedla et al., 2014]
Spatial coupling is a tool to construct codes on graphs that have excellent performance under iterative decoding.
Introduction: Product Codes and Staircase Codes

Code proposals for fiber-optical communication systems are often very structured (i.e., deterministic) and not random-like (for example [Justesen et al., 2010], [Smith et al., 2012], [Jian et al., 2013]).
Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]
Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]
Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]
Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]
Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

each row/column is a codeword in some component code
Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

Tanner graph

each row/column is a codeword in some component code
Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

each row/column is a codeword in some component code

Tanner graph

degree-2 variable node
Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

each row/column is a codeword in some component code

Tanner graph
Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

Tanner graph
Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

staircase array [Smith et al., 2012]

Tanner graph
Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

staircase array [Smith et al., 2012]

Tanner graph
Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

staircase array [Smith et al., 2012]
Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

staircase array [Smith et al., 2012]
Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

staircase array [Smith et al., 2012]

Tanner graph
Introduction: Product Codes and Staircase Codes

- **Rectangular array** [Elias, 1954]
- **Staircase array** [Smith et al., 2012]

Tanner graph
Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

Tanner graph

classical product code

staircase array [Smith et al., 2012]
generalized product code (GPC)

...
Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954] staircase array [Smith et al., 2012]

Tanner graph generalized product code (GPC)
Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

staircase array [Smith et al., 2012]

generalized product code (GPC)

spatially-coupled code

positions: 1 2 3 4 5
Introduction: Product Codes and Staircase Codes

- **Deterministic codes** with fixed and structured Tanner graph

 - **rectangular array** [Elias, 1954]
 - **staircase array** [Smith et al., 2012]

 - Generalized product code (GPC)
 - Spatially-coupled code

 - Positions: 1 2 3 4 5
Introduction: Product Codes and Staircase Codes

- **Deterministic** codes with fixed and structured Tanner graph
- **GPCs** with iterative bounded-distance decoding are very appealing due to low-complexity hardware implementation
Iterative Bounded-Distance Decoding
Iterative Bounded-Distance Decoding
Iterative Bounded-Distance Decoding

- Codeword transmission over *binary erasure channel* with erasure probability p
Iterative Bounded-Distance Decoding

- Codeword transmission over binary erasure channel with erasure probability p
Iterative Bounded-Distance Decoding

- Codeword transmission over binary erasure channel with erasure probability p
Iterative Bounded-Distance Decoding

- Codeword transmission over binary erasure channel with erasure probability p
- Each constraint node corresponds to t-erasure correcting component code
Iterative Bounded-Distance Decoding

- Codeword transmission over **binary erasure channel** with erasure probability p
- Each constraint node corresponds to t-erasure correcting component code
- ℓ iterations of **bounded-distance decoding** = peeling of vertices with degree $\leq t$ (in parallel)
Iterative Bounded-Distance Decoding

1st iteration \((t = 2)\)

- Codeword transmission over binary erasure channel with erasure probability \(p\)
- Each constraint node corresponds to \(t\)-erasure correcting component code
- \(\ell\) iterations of bounded-distance decoding = peeling of vertices with degree \(\leq t\) (in parallel)
Iterative Bounded-Distance Decoding

1st iteration \((t = 2)\)

- Codeword transmission over **binary erasure channel** with erasure probability \(p\)
- Each constraint node corresponds to \(t\)-erasure correcting component code
- \(\ell\) iterations of **bounded-distance decoding** = **peeling** of vertices with degree \(\leq t\) (in parallel)
Iterative Bounded-Distance Decoding

2nd iteration ($t = 2$)

- Codeword transmission over binary erasure channel with erasure probability p
- Each constraint node corresponds to t-erasure correcting component code
- ℓ iterations of bounded-distance decoding = peeling of vertices with degree $\leq t$ (in parallel)
Iterative Bounded-Distance Decoding

2nd iteration ($t = 2$)

- Codeword transmission over **binary erasure channel** with erasure probability p
- Each constraint node corresponds to t-erasure correcting component code
- ℓ iterations of **bounded-distance decoding** = peeling of vertices with degree $\leq t$ (in parallel)
Staircase Code Optimization
Staircase Code Optimization

Problem Formulation

For staircase code with fixed code rate R, find “good” component codes
Staircase Code Optimization

Problem Formulation
For staircase code with fixed code rate R, find “good” component codes

- [Zhang and Kschischang, 2014] use simulations to predict performance → computationally intensive
Problem Formulation

For *staircase code* with fixed code rate R, find “good” component codes

- [Zhang and Kschischang, 2014] use simulations to predict performance → computationally intensive
Staircase Code Optimization

Problem Formulation

For staircase code with fixed code rate R, find “good” component codes

- [Zhang and Kschischang, 2014] use simulations to predict performance → computationally intensive
Problem Formulation

For staircase code with fixed code rate R, find “good” component codes

- [Zhang and Kschischang, 2014] use simulations to predict performance → computationally intensive
Staircase Code Optimization

Problem Formulation

For staircase code with fixed code rate R, find “good” component codes

- [Zhang and Kschischang, 2014] use simulations to predict performance \rightarrow computationally intensive
- Approach in Paper C based on a connection between staircase codes and random-like spatially-coupled codes from [Jian et al., 2012]
Problem Formulation

For staircase code with fixed code rate R, find “good” component codes

- [Zhang and Kschischang, 2014] use simulations to predict performance → computationally intensive
- Approach in Paper C based on a connection between staircase codes and random-like spatially-coupled codes from [Jian et al., 2012]
Staircase Code Optimization

Problem Formulation

For **staircase code** with fixed code rate R, find “good” component codes

- [Zhang and Kschischang, 2014] use simulations to predict performance \rightarrow computationally intensive
- Approach in Paper C based on a connection between staircase codes and random-like spatially-coupled codes from [Jian et al., 2012]
- Efficient asymptotic analysis via density evolution [Luby et al., 1998], [Richardson and Urbanke, 2001]
Staircase Code Optimization

Problem Formulation

For *staircase code* with fixed code rate R, find “good” component codes

- [Zhang and Kschischang, 2014] use simulations to predict performance → computationally intensive
- Approach in [Paper C] based on a connection between staircase codes and random-like spatially-coupled codes from [Jian et al., 2012]
- Efficient asymptotic analysis via density evolution [Luby et al., 1998], [Richardson and Urbanke, 2001]
Staircase Code Optimization

Problem Formulation

For staircase code with fixed code rate R, find “good” component codes

- [Zhang and Kschischang, 2014] use simulations to predict performance → computationally intensive
- Approach in Paper C based on a connection between staircase codes and random-like spatially-coupled codes from [Jian et al., 2012]
- Efficient asymptotic analysis via density evolution [Luby et al., 1998], [Richardson and Urbanke, 2001]
- Works well, however, only heuristically motivated
Problem Formulation

For staircase code with fixed code rate R, find “good” component codes

- [Zhang and Kschischang, 2014] use simulations to predict performance → computationally intensive
- Approach in Paper C based on a connection between staircase codes and random-like spatially-coupled codes from [Jian et al., 2012]
- Efficient asymptotic analysis via density evolution [Luby et al., 1998], [Richardson and Urbanke, 2001]
- Works well, however, only heuristically motivated

Fundamental question

Is it possible to directly analyze staircase codes (and other deterministic GPCs) without the detour to random-like codes? Papers D–F
Parametrized Construction of Generalized Product Codes

Product codes

Staircase codes

Positions: 1 2 3 4 5
Parametrized Construction of Generalized Product Codes

- Product codes
- Staircase codes

```
positions: 1 2
```

```
positions: 1 2 3 4 5
```
Parametrized Construction of Generalized Product Codes

- **Product codes**
- **Staircase codes**

```
positions: 1 2 3 4
L = 2
```

```
positions: 1 2 3 4 5
L = 5
```
Parametrized Construction of Generalized Product Codes

- **Product Codes**
 - $L = 2$
 - $L = 5$

- **Staircase Codes**
 - $L = 2$
 - $L = 5$

η: symmetric $L \times L$ matrix that defines graph connectivity
Parametrized Construction of Generalized Product Codes

\[\eta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]

\(\eta \): symmetric \(L \times L \) matrix that defines graph connectivity
Parametrized Construction of Generalized Product Codes

product codes

staircase codes

η = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}

η: symmetric \(L \times L \) matrix that defines graph connectivity
Parametrized Construction of Generalized Product Codes

product codes

staircase codes
Parametrized Construction of Generalized Product Codes

product codes

staircase codes

n: “problem size”, proportional to the number of constraint nodes
Parametrized Construction of Generalized Product Codes

product codes

staircase codes

n: “problem size”, proportional to the number of constraint nodes

increasing n
Parametrized Construction of Generalized Product Codes

product codes

staircase codes

n: “problem size”, proportional to the number of constraint nodes

increasing n
Parametrized Construction of Generalized Product Codes

n: “problem size”, proportional to the number of constraint nodes

increasing n
Density Evolution
Density Evolution

• What happens asymptotically for $n \to \infty$?
Density Evolution

- What happens asymptotically for $n \to \infty$?
- Let $p = c/n$ for $c > 0$, where c is the effective channel quality
Density Evolution

- What happens asymptotically for $n \to \infty$?
- Let $p = c/n$ for $c > 0$, where c is the effective channel quality.
Density Evolution

- What happens asymptotically for $n \to \infty$?
- Let $p = c/n$ for $c > 0$, where c is the effective channel quality.
Density Evolution

- What happens asymptotically for $n \to \infty$?
- Let $p = c/n$ for $c > 0$, where c is the effective channel quality

$$x^{(\ell)} = \Psi_{\geq t}(cBx^{(\ell-1)})$$
Density Evolution

- What happens asymptotically for $n \to \infty$?
- Let $p = c/n$ for $c > 0$, where c is the effective channel quality.
Density Evolution

- What happens asymptotically for $n \to \infty$?
- Let $p = c/n$ for $c > 0$, where c is the effective channel quality.

\[
B \triangleq \gamma \eta \quad \text{initial condition} \quad x^{(0)} = (1, \ldots, 1)
\]

\[
x^{(\ell)} = \Psi_{\geq t}(cBx^{(\ell-1)})
\]
Density Evolution

- What happens asymptotically for $n \to \infty$?
- Let $p = c/n$ for $c > 0$, where c is the effective channel quality

\[
\begin{align*}
B &\triangleq \gamma \eta \\
x^{(0)} &\triangleq (1, \ldots, 1) \\
x^{(\ell)} &= \Psi_{\geq t}(cBx^{(\ell-1)}) \\
\Psi_{\geq t}(x) &\triangleq 1 - \sum_{i=0}^{t-1} \frac{x^i}{i!} e^{-x}
\end{align*}
\]
Density Evolution

- What happens asymptotically for $n \to \infty$?
- Let $p = c/n$ for $c > 0$, where c is the effective channel quality

\[
x^{(\ell)} = \Psi_t(cBx^{(\ell-1)})
\]

\[
B \triangleq \gamma \eta
\]

\[
x^{(0)} = (1, \ldots, 1)
\]

\[
\Psi_t(x) \triangleq 1 - \sum_{i=0}^{t-1} \frac{x^i}{i!} e^{-x}
\]
Density Evolution

- What happens asymptotically for $n \to \infty$?
- Let $p = c/n$ for $c > 0$, where c is the effective channel quality.

\[
\begin{align*}
B & \triangleq \gamma \eta \\
\mathbf{x}^{(0)} & = (1, \ldots, 1) \\
\mathbf{x}^{(\ell)} & = \Psi_{\geq t}(cB \mathbf{x}^{(\ell-1)}) \\
\Psi_{\geq t}(x) & \triangleq 1 - \sum_{i=0}^{t-1} \frac{x^i}{i!} e^{-x}
\end{align*}
\]
Density Evolution

- What happens asymptotically for $n \to \infty$?
- Let $p = c/n$ for $c > 0$, where c is the effective channel quality

\[
B \triangleq \gamma \eta \\
\mathbf{x}^{(0)} = (1, \ldots, 1)
\]

\[
\mathbf{x}^{(\ell)} = \Psi_{\geq t}(cB \mathbf{x}^{(\ell-1)})
\]

\[
\Psi_{\geq t}(x) \triangleq 1 - \sum_{i=0}^{t-1} \frac{x^i}{i!} e^{-x}
\]
Density Evolution

- What happens asymptotically for $n \to \infty$?
- Let $p = c/n$ for $c > 0$, where c is the effective channel quality.

\[B \overset{\Delta}{=} \gamma \eta \quad \text{initial condition} \quad x^{(0)} = (1, \ldots, 1) \]

\[x^{(\ell)} = \Psi_{\geq t}(cBx^{(\ell-1)}) \]

Element-wise application of

\[\Psi_{\geq t}(x) \overset{\Delta}{=} 1 - \sum_{i=0}^{t-1} \frac{x^i}{i!} e^{-x} \]
Comparison of Deterministic and Random-Like Codes
Comparison of Deterministic and Random-Like Codes

Deterministic

\[x^{(\ell)} = \Psi_{\geq t}(cBx^{(\ell-1)}) \]

\((B = \gamma\eta)\)

\[
\frac{1}{2} \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}
\]
Comparison of Deterministic and Random-Like Codes

Deterministic

\[x^{(\ell)} = \Psi \ge t(cBx^{(\ell-1)}) \]

\[(B = \gamma \eta)\]

\[\frac{1}{2} \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix} \]
Comparison of Deterministic and Random-Like Codes

Deterministic

\[
x^{(\ell)} = \Psi_{\geq t}(cBx^{(\ell-1)})
\]

\[
(B = \gamma \eta)
\]

\[
\frac{1}{2} \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}
\]

Random-Like [Jian et al., 2012]

\[
x^{(\ell)} = \Psi_{\geq t}(c\tilde{B}x^{(\ell-1)})
\]

\[
\tilde{B} = \begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{pmatrix}
\]
Comparison of Deterministic and Random-Like Codes

Deterministic

\[x^{(\ell)} = \Psi_{\geq t}(cBx^{(\ell-1)}) \]

\((B = \gamma \eta)\)

\[\frac{1}{2} \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \]

Random-Like [Jian et al., 2012]

\[x^{(\ell)} = \Psi_{\geq t}(c\tilde{B}x^{(\ell-1)}) \]

\[\tilde{B} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 2 & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \]

- Equations have the same form \(\implies\) similar performance
Comparison of Deterministic and Random-Like Codes

Deterministic

Random-Like [Jian et al., 2012]

capacity-achieving at high rates over the binary symmetric channel

\[x^{(\ell)} = \Psi_\geq t (cBx^{(\ell-1)}) \]

\[(B = \gamma \eta) \]

\[
\frac{1}{2} \begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{pmatrix}
\]

\[
\frac{1}{4} \begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{pmatrix}
\]

- Equations have the same form \(\Longrightarrow \) similar performance
Comparison of Deterministic and Random-Like Codes

Deterministic

\[x^{(\ell)} = \Psi_{\geq t}(cBx^{(\ell-1)}) \]

\[(B = \gamma \eta) \]

\[\frac{1}{2} \]

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\end{pmatrix}
\]

Random-Like [Jian et al., 2012]

\[\frac{1}{4} \]

\[
\begin{pmatrix}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
\end{pmatrix}
\]

capacity-achieving at high rates over the binary symmetric channel

- Equations have the same form \(\implies \) similar performance
- The performance of random-like codes (over the binary erasure channel) can be “emulated” with deterministic codes [Paper F]
Design and Analysis of Deterministic Codes

Summary
Design and Analysis of Deterministic Codes

Summary

- Several deterministic codes (including spatially-coupled versions) have been proposed for fiber-optical communications
Design and Analysis of Deterministic Codes

Summary

- Several deterministic codes (including spatially-coupled versions) have been proposed for fiber-optical communications.
- Rigorous asymptotic performance analysis over the binary erasure channel under iterative bounded-distance decoding possible.
Design and Analysis of Deterministic Codes

Summary

- Several deterministic codes (including spatially-coupled versions) have been proposed for fiber-optical communications.
- Rigorous asymptotic performance analysis over the binary erasure channel under iterative bounded-distance decoding possible.
- Future work: extension to binary symmetric channel.
Large interest in analyzing and designing spectrally-efficient fiber-optical systems ([Essiambre et al., 2010], [Smith and Kschischang, 2010], [Schmalen et al., 2013], [Beygi et al., 2014], . . .)
Spectrally-Efficient Communication

![Diagram showing communication channel](image)
Spectrally-Efficient Communication

communication channel

multilevel signal constellation
Spectrally-Efficient Communication

\[\Phi \]

\[b_1, b_2, \ldots, b_m \]

communication channel

000 001 011 010 110 111 101 100
Spectrally-Efficient Communication

\[\Phi \rightarrow \text{communication channel} \rightarrow \Phi^{-1} \]

- modulator: \(b_1, \ldots, b_m \)
- demodulator: log-likelihood ratios (LLR) ("soft" information)

\[l_1, \ldots, l_m \]

000 001 011 010 110 111 101 100
Spectrally-Efficient Communication

\[
\begin{align*}
\Phi & \quad \quad \quad \text{communication channel} \quad \quad \quad \Phi^{-1} \\
\Phi^{-1} & \quad \quad \quad \text{communication channel} \quad \quad \quad \Phi
\end{align*}
\]

- \(b_1 \)
- \(\vdots \)
- \(b_m \)
- \(l_1 \)
- \(\vdots \)
- \(l_m \)
Spectrally-Efficient Communication

- Approximate setup: parallel channels with different qualities (constellation size determines the number of channels)
Spectrally-Efficient Communication

- Approximate setup: parallel channels with different qualities (constellation size determines the number of channels)
Spectrally-Efficient Communication

- Approximate setup: parallel channels with different qualities (constellation size determines the number of channels)
- Fix one binary encoder/decoder pair
Spectrally-Efficient Communication

- Approximate setup: parallel channels with different qualities (constellation size determines the number of channels)
- Fix one binary encoder/decoder pair
- Bit mapper determines the allocation of coded bits to the channels
Spectrally-Efficient Communication

- Approximate setup: parallel channels with different qualities (constellation size determines the number of channels)
- Fix one binary encoder/decoder pair
- Bit mapper determines the allocation of coded bits to the channels

Problem Formulation ([Richter et al., 2007], [Cheng et al., 2012], ...)
Optimize the bit mapper for a given code and signal constellation
Protograph LDPC Codes
Protograph LDPC Codes

- Compact representation of a large random-like graph [Thorpe, 2005]
Protograph LDPC Codes

- Compact representation of a large random-like graph [Thorpe, 2005]
Protograph LDPC Codes

- Compact representation of a large random-like graph [Thorpe, 2005]
Protograph LDPC Codes

- Compact representation of a large random-like graph [Thorpe, 2005]
Protograph LDPC Codes

- Compact representation of a large random-like graph [Thorpe, 2005]
- We propose a bit mapper optimization technique that is more flexible than previous approaches in [Divsalar and Jones, 2005], [Jin et al., 2010], [Van Nguyen et al., 2011]
Protograph LDPC Codes

- Compact representation of a large random-like graph [Thorpe, 2005]
- We propose a bit mapper optimization technique that is more flexible than previous approaches in [Divsalar and Jones, 2005], [Jin et al., 2010], [Van Nguyen et al., 2011]

AR4JA codes [Divsalar et al., 2005]
Protograph LDPC Codes

- Compact representation of a large random-like graph [Thorpe, 2005]
- We propose a bit mapper optimization technique that is more flexible than previous approaches in [Divsalar and Jones, 2005], [Jin et al., 2010], [Van Nguyen et al., 2011]

AR4JA codes [Divsalar et al., 2005]

spatially-coupled LDPC codes
Terminated
Terminated

protograph
Terminated

protograph

graph irregularity: yes (boundaries)
Terminated

protograph

- graph irregularity: yes (boundaries)
- wave effect: yes (capacity-approaching)
Terminated

- protograph
- graph irregularity: yes (boundaries)
- wave effect: yes (capacity-approaching)
- rate loss: yes
Terminated

- protograph

Tail-biting

- graph irregularity: yes (boundaries)
- wave effect: yes (capacity-approaching)
- rate loss: yes
Terminated

- protograph

- graph irregularity: yes (boundaries)

- wave effect: yes (capacity-approaching)

- rate loss: yes

Tail-biting

- no
Terminated

- Protograph
- Graph irregularity: yes (boundaries)
- Wave effect: yes (capacity-approaching)
- Rate loss: yes

Tail-biting

- Protograph
- Graph irregularity: no
- Wave effect: no (comparable to regular LDPC)
- Rate loss: yes
Terminated

- Protograph
- Graph irregularity: yes (boundaries)
- Wave effect: yes (capacity-approaching)
- Rate loss: yes

Tail-biting

- Graph irregularity: no
- Wave effect: no (comparable to regular LDPC)
- Rate loss: no
Terminated

Terminated

Tail-biting

protograph

graph irregularity

yes (boundaries)

wave effect

yes

(rate-approaching)

rate loss

yes

no

Idea: Use unequal error protection of a multilevel signal constellation to induce wave-like decoding behavior for tail-biting codes.
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

window decoder

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

- Predicted BER per spatial position (baseline)
- Predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

Predicted BER per spatial position (baseline)

Predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

predicted BER per spatial position (baseline)

predicted BER per spatial position (optimized)
Optimization Result: Decoding Behavior

Locally improved decoding convergence in the first spatial positions leads to wave-like decoding behavior, similar to terminated spatially-coupled codes.
Design of Spectrally-Efficient Fiber-Optical Systems

Summary
Design of Spectrally-Efficient Fiber-Optical Systems

Summary

- Spectrally-efficient communication with binary codes leads to the problem of bit mapper optimization
Summary

- Spectrally-efficient communication with binary codes leads to the problem of bit mapper optimization
- Optimized bit mapper can offer significant performance improvements
Summary

- Spectrally-efficient communication with binary codes leads to the problem of bit mapper optimization
- Optimized bit mapper can offer significant performance improvements
- For tail-biting spatially-coupled codes, unequal error protection of a nonbinary signal constellation can be exploited to induce wave-like decoding behavior
Conclusions
Conclusions

- **Spatially-coupled codes** have excellent performance using practical iterative decoding algorithms.
Conclusions

- **Spatially-coupled codes** have excellent performance using practical iterative decoding algorithms.
- Certain **deterministic** codes (including spatially-coupled codes) can be analyzed rigorously with **density evolution** over the binary erasure channel.
Conclusions

- **Spatially-coupled codes** have excellent performance using practical iterative decoding algorithms.
- Certain **deterministic codes** (including spatially-coupled codes) can be analyzed rigorously with **density evolution** over the binary erasure channel.
- Optimizing bit mappers can offer significant performance improvements, in particular for **tail-biting spatially-coupled codes**.
Conclusions

- Spatially-coupled codes have excellent performance using practical iterative decoding algorithms.
- Certain deterministic codes (including spatially-coupled codes) can be analyzed rigorously with density evolution over the binary erasure channel.
- Optimizing bit mappers can offer significant performance improvements, in particular for tail-biting spatially-coupled codes.

Thank you!
References I

Coded modulation for fiber-optic networks.

EXIT-aided bit mapping design for LDPC coded modulation with APSK constellations.

Protograph based low error floor LDPC coded modulation.
In Proc. IEEE Military Communications Conf. (MILCOM), Atlantic City, NJ.

Protograph based LDPC codes with minimum distance linearly growing with block size.
In Proc. IEEE Glob. Communication Conf. (GLOBECOM), St. Louis, Missouri.

Error-free coding.

Capacity limits of optical fiber networks.

Time-varying periodic convolutional codes with low-density parity-check matrix.
References II

Low-density parity-check codes.

Approaching capacity at high rates with iterative hard-decision decoding.
In *Proc. IEEE Int. Symp. Information Theory (ISIT)*, Cambridge, MA.

Iterative hard-decision decoding of braided BCH codes for high-speed optical communication.
In *Proc. IEEE Glob. Communication Conf. (GLOBECOM)*, Atlanta, GA.

Optimized variable degree matched mapping for protograph LDPC coded modulation with 16QAM.
In *Proc. Int. Symp. Turbo Codes and Iterative Information Processing (ISTC)*, Brest, France.

Error correcting coding for OTN.
IEEE Commun. Mag., 59(9):70–75.

Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC.

Terminated LDPC convolutional codes with thresholds close to capacity.
References III

Analysis of random processes via and-or tree evaluation.

The capacity of low-density parity-check codes under message-passing decoding.

On the mapping of low-density parity-check codes for bit-interleaved coded modulation.
In Proc. IEEE Int. Symp. Information Theory (ISIT), Nice, Italy.

Forward error correction in optical core and optical access networks.

Staircase codes: FEC for 100 Gb/s OTN.

Future prospects for FEC in fiber-optic communications.

A recursive approach to low complexity codes.
Low-density parity-check (LDPC) codes constructed from protographs.
IPN Progress Report 42-154, JPL.

Threshold of protograph-based LDPC coded BICM for Rayleigh fading.
In *Proc. IEEE Glob. Communication Conf. (GLOBECOM)*, Houston, TX.

A simple proof of Maxwell saturation for coupled scalar recursions.

Staircase codes with 6% to 33% overhead.