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Deep Learning [LeCun et al., 2015] Deep Q-Learning [Mnih et al., 2015] ResNet [He et al., 2015]

· · ·

Multi-layer neural networks: impressive performance, countless applications

[Du and Lowery, 2010] [Nakashima et al., 2017]

Multi-step methods for solving the propagation equation in fiber-optics
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1. show that multi-layer neural networks and the so-called split-step method
in fiber-optics have the same functional form: both alternate linear and
pointwise nonlinear steps

2. propose a model-based machine-learning approach based on
parameterizing the split-step method (no black-box neural networks)

3. apply the proposed approach by revisiting hardware-efficient nonlinear
equalization with deep-learning tools
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How to optimize θ = {W (1), . . . , W (ℓ), b(1), . . . , b(ℓ)}? Deep learning

min
θ

N∑

i=1

Loss(fθ(y(i)), x
(i)) , g(θ) using θk+1 = θk − λ∇θg(θk) (1)
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stochastic gradient descent,
RMSProp, Adam, . . .
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end-to-end learning [O’Shea and Hoydis, 2017]

data in data out

parameterized TX

Tθ

parameterized RX

Rθ

Cθ

surrogate channel

Using neural networks for Tθ, Rθ, Cθ

• How to choose network architecture (#layers, activation function)? ✗

• How to initialize parameters? ✗

• How to interpret solutions? Any insight gained? ✗

• . . .

Model-based learning: sparse signal recovery [Gregor and Lecun, 2010],

[Borgerding and Schniter, 2016], neural belief propagation [Nachmani et al., 2016],
radio transformer networks [O’Shea and Hoydis, 2017], . . .
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Fiber-Optic Communications

Fiber-optic systems enable data traffic over very long distances connecting
cities, countries, and continents.

• Dispersion: different wavelengths travel at different speeds (linear)

• Kerr effect: refractive index changes with signal intensity (nonlinear)
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[Häger & Pfister, 2018], Nonlinear Interference Mitigation via Deep Neural Networks, (OFC)

[Häger & Pfister, 2018], Deep Learning of the Nonlinear Schrödinger Equation in Fiber-Optic Communications, (ISIT)
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• Includes as special cases: step-size optimization, “placement” of nonlinear
operator, higher-order dispersion, matched filtering . . .
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pre-distortion [Essiambre and Winzer, 2005],

[Roberts et al., 2006], split nonlinear
equalization [Lavery et al., 2016]

nonlinear equalization (this talk)

fine-tune with experimental data, reduce simulation time
[Leibrich and Rosenkranz, 2003], [Li et al., 2005]

Model-based learning approaches

• How to choose network architecture (#layers, activation function)? X

• How to initialize parameters? X

• How to interpret solutions? Any insight gained? X
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• Fiber with negated parameters (β2 → −β2, γ → −γ) would perform
perfect channel inversion [Paré et al., 1996] (ignoring attenuation)

• Digital backpropagation: invert a partial differential equation in real time
[Essiambre and Winzer, 2005], [Roberts et al., 2006], [Li et al., 2008], [Ip and Kahn, 2008]

• Widely considered to be impractical (too complex): linear equalization is
already one of the most power-hungry DSP blocks in coherent receivers
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Real-Time Digital Backpropagation

[Crivelli et al., 2014]

Our approach: deep learning and model compression

• Joint optimization,

• pruning, and

• quantization

of all linear steps =⇒ hardware-efficient digital backpropagation
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Deep learning of parameters θ = {h(1), . . . , h(M)}:
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• 10.7 Gbaud

• 2 samples/symbol processing

• single channel, single pol.

• ≫ 1000 total taps (70 taps/step) =⇒ > 100× complexity of EDC

• Learned approach uses only 77 total taps: alternate 5 and 3 taps/step
and use different filter coefficients in all steps [Häger and Pfister, 2018a]

• Can outperform “ideal DBP” in the nonlinear regime [Häger and Pfister, 2018b]

17 / 24



Machine Learning Model-Based Learning Learned Digital Backpropagation Outlook and Future Work Conclusions

Real-Time ASIC Implementation

[Crivelli et al., 2014]

18 / 24



Machine Learning Model-Based Learning Learned Digital Backpropagation Outlook and Future Work Conclusions

Real-Time ASIC Implementation

[Crivelli et al., 2014]

[Fougstedt et al., 2017], Time-domain digital back propagation: Algorithm and finite-precision implementation aspects, (OFC)

[Fougstedt et al., 2018], ASIC implementation of time-domain digital back propagation for coherent receivers, (PTL)

[Sherborne et al., 2018], On the impact of fixed point hardware for optical fiber nonlinearity compensation algorithms, (JLT)
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• Our linear steps are very short symmetric FIR filters (as few as 3 taps)

• 28-nm ASIC at 416.7 MHz clock speed (40 GHz signal)

• Only 5-6 bit filter coefficients via learned quantization
• Hardware-friendly nonlinear steps (Taylor expansion)
• All FIR filters are fully reconfigurable

[Fougstedt et al., 2018], ASIC implementation of time-domain digital backpropagation with deep-learned chromatic dispersion filters,

(ECOC)
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[Fougstedt et al., 2018], ASIC implementation of time-domain digital backpropagation with deep-learned chromatic dispersion filters,

(ECOC)

18 / 24



Machine Learning Model-Based Learning Learned Digital Backpropagation Outlook and Future Work Conclusions

Real-Time ASIC Implementation

[Crivelli et al., 2014]

h
(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1

h
(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1

h
(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1

h
(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1

h
(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1 h

(i)
1

b D

h
(i)
0

b D

h
(i)
1

• Our linear steps are very short symmetric FIR filters (as few as 3 taps)

• 28-nm ASIC at 416.7 MHz clock speed (40 GHz signal)

• Only 5-6 bit filter coefficients via learned quantization
• Hardware-friendly nonlinear steps (Taylor expansion)
• All FIR filters are fully reconfigurable

• < 2× power compared to EDC [Crivelli et al., 2014, Pillai et al., 2014]

[Fougstedt et al., 2018], ASIC implementation of time-domain digital backpropagation with deep-learned chromatic dispersion filters,

(ECOC)
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Why Does The Learning Approach Work?

Previous work: design a single filter or filter pair and use it repeatedly.

=⇒ Good overall response only possible with very long filters.
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From [Ip and Kahn, 2009]:

• “We also note that [. . . ] 70 taps, is much larger than expected”

• “This is due to amplitude ringing in the frequency domain”

• “Since backpropagation requires multiple iterations of the linear filter,
amplitude distortion due to ringing accumulates (Goldfarb & Li, 2009)”
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From [Ip and Kahn, 2009]:

• “We also note that [. . . ] 70 taps, is much larger than expected”

• “This is due to amplitude ringing in the frequency domain”

• “Since backpropagation requires multiple iterations of the linear filter,
amplitude distortion due to ringing accumulates (Goldfarb & Li, 2009)”

The learning approach uncovered that there is no such requirement!
[Lian, Häger, Pfister, 2018], What can machine learning teach us about communications? (ITW)
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Sacrifice individual filter accuracy, but different response per step.

=⇒ Good overall response even with very short filters by joint optimization.
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Wideband Signals and Subband Processing

.

f

1 2 3 4 5−5 −4 −3 −2 −1 0 6(6)

analysis prototype filter wideband signal

• Subband processing: split received signal into N parallel signals

[Taylor, 2008], Compact digital dispersion compensation algorithms, (OFC)

[Ho, 2009], Subband equaliser for chromatic dispersion of optical fibre, (Electronics Lett.)

[Slim et al., 2013], Delayed single-tap frequency-domain chromatic-dispersion compensation, (PTL)

[Nazarathy and Tolmachev, 2014], Subbanded DSP architectures based on underdecimated filter banks . . . , (Signal Proc. Mag.)

[Mateo et al., 2010], Efficient compensation of inter-channel nonlinear effects via digital backward . . . , (Opt. Express)

[Ip et al., 2011], Complexity versus performance tradeoff for fiber nonlinearity compensation . . . (OFC)

[Oyama et al., 2015], Complexity reduction of perturbation-based nonlinear compensator by sub-band processing, (OFC)

. . .
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analysis prototype filter wideband signal

• Subband processing: split received signal into N parallel signals

• Parameterizing the split-step method for coupled Schrödinger equations
[Leibrich and Rosenkranz, 2003] =⇒ low-complexity candidate for
wideband processing [Häger and Pfister, 2018c]

• Similar structure as popular convolutional neural networks (alternating
filter banks and nonlinearities)

[Taylor, 2008], Compact digital dispersion compensation algorithms, (OFC)

[Ho, 2009], Subband equaliser for chromatic dispersion of optical fibre, (Electronics Lett.)

[Slim et al., 2013], Delayed single-tap frequency-domain chromatic-dispersion compensation, (PTL)

[Nazarathy and Tolmachev, 2014], Subbanded DSP architectures based on underdecimated filter banks . . . , (Signal Proc. Mag.)

[Mateo et al., 2010], Efficient compensation of inter-channel nonlinear effects via digital backward . . . , (Opt. Express)

[Ip et al., 2011], Complexity versus performance tradeoff for fiber nonlinearity compensation . . . (OFC)

[Oyama et al., 2015], Complexity reduction of perturbation-based nonlinear compensator by sub-band processing, (OFC)

. . .
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[Crivelli et al., 2014]
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∗

4

4

L

× = multiplication (rotation)

∗ = convolution

• Combining digital backpropagation with compensation of
polarization-mode dispersion

[Goroshko et al., 2016], Overcoming performance limitations of digital back propagation due to polarization mode dispersion, (CTON)

[Czegledi et al., 2017], Digital backpropagation accounting for polarization-mode dispersion, (Opt. Express)

[Liga et al., 2018], A PMD-adaptive DBP receiver based on SNR optimization, (OFC)
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∗

4

4

L

× = multiplication (rotation)

∗ = convolution

≈ ×

h2h1h0

h0h1h2

∗ × ∗ × . . . × ∗

• Combining digital backpropagation with compensation of
polarization-mode dispersion

• Promising performance–complexity tradeoff using model-based
factorization approach and machine learning [Häger et al., 2020]

[Goroshko et al., 2016], Overcoming performance limitations of digital back propagation due to polarization mode dispersion, (CTON)

[Czegledi et al., 2017], Digital backpropagation accounting for polarization-mode dispersion, (Opt. Express)

[Liga et al., 2018], A PMD-adaptive DBP receiver based on SNR optimization, (OFC)

[Häger et al., 2020], Model-based machine learning for joint digital backpropagation and PMD compensation, (OFC)
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Ongoing and Future Work

• Experimental Demonstrations: stay tuned . . .

• How to integrate into a standard coherent receiver DSP chain?

• How to successfully train in the presence of practical impairments (laser
phase noise, transceiver noise, . . . )

• How realistic is online learning in custom DSP? (We only have “hundreds”
of parameters, not “thousands” or “millions” like neural networks)
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neural-network-based ML model-based ML

universal function approximators application-tailored

good designs require
experience and fine-tuning

relies on domain knowledge
(algorithms, physics, . . . )

black boxes,
difficult to “open”

familiar building blocks (e.g., FIR
filters) can enable interpretability

Thank you!
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