Optimized Bit Mappings for Spatially Coupled LDPC Codes over Parallel Binary Erasure Channels

 $\begin{array}{c} \textbf{Christian Häger}^1 \quad \text{Alexandre Graell i Amat}^1 \quad \text{Alex Alvarado}^2 \\ & \text{Fredrik Brännström}^1 \quad \text{Erik Agrell}^1 \end{array}$

¹Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden,

 $^{2}\mathrm{Department}$ of Enginering, University of Cambridge, UK

{christian.haeger, alexandre.graell, fredrik.brannstrom, agrell}@chalmers.se, alex.alvarado@ieee.org

7th IEEE WS AIPWCS, Aalborg, November 14-15, 2013

System Model 000	Threshold and Optimization	Optimization Results 00000	Conclusions O	CHALMERS
		Motivation		
		parallel channels ← channel 1 ÷ ← channel m		

000	000	00000	0	CHALMERS
		Motivation		
		channel 1		

• Parallel channels arise in many practical scenarios: multicarrier transmission, rate-compatible puncturing of turbo-like codes, bit-interleaved coded modulation (BICM), ...

- Parallel channels arise in many practical scenarios: multicarrier transmission, rate-compatible puncturing of turbo-like codes, bit-interleaved coded modulation (BICM), ...
- One binary encoder/decoder pair is often used for simplicity

- Parallel channels arise in many practical scenarios: multicarrier transmission, rate-compatible puncturing of turbo-like codes, bit-interleaved coded modulation (BICM), ...
- One binary encoder/decoder pair is often used for simplicity
- Here: spatially coupled LDPC codes and belief propagation (BP) decoding

- Parallel channels arise in many practical scenarios: multicarrier transmission, rate-compatible puncturing of turbo-like codes, bit-interleaved coded modulation (BICM), ...
- One binary encoder/decoder pair is often used for simplicity
- Here: spatially coupled LDPC codes and belief propagation (BP) decoding
- The bit mapper determines the allocation of code bits to the channels

- Parallel channels arise in many practical scenarios: multicarrier transmission, rate-compatible puncturing of turbo-like codes, bit-interleaved coded modulation (BICM), ...
- One binary encoder/decoder pair is often used for simplicity
- Here: spatially coupled LDPC codes and belief propagation (BP) decoding
- The bit mapper determines the allocation of code bits to the channels

Main question

How much gain is possible by optimizing the bit mapper compared to a uniformly random mapper in the asymptotic setting (infinite block length)?

System Model 000	Threshold and Optimization	Optimization Results 00000	Conclusions O	CHALMERS
		Outline		

1. System Model

- 2. Decoding Threshold and Optimization
- 3. Results
- 4. Conclusions

System Model		
•00		CHALMERS

AWGN channel using a labeled signal constellation:

AWGN channel using a labeled signal constellation:

 $X \in \mathcal{X} \xrightarrow{N} Y$

AWGN channel using a labeled signal constellation:

AWGN channel using a labeled signal constellation:

AWGN channel using a labeled signal constellation:

Individual channel qualities

 $\varepsilon_1 \triangleq 1 - I(B_1; Y), \ \varepsilon_2 \triangleq 1 - I(B_2; Y)$ with average $\overline{\varepsilon} = (\varepsilon_1 + \varepsilon_2)/2$.

AWGN channel using a labeled signal constellation:

- Individual channel qualities $\varepsilon_1 \triangleq 1 - I(B_1; Y), \ \varepsilon_2 \triangleq 1 - I(B_2; Y)$
 - with average $\bar{\varepsilon} = (\varepsilon_1 + \varepsilon_2)/2$.
- $\bar{\varepsilon}$ characterizes the quality of the set of channels

AWGN channel using a labeled signal constellation:

- Individual channel qualities $\varepsilon_1 \triangleq 1 - I(B_1; Y), \ \varepsilon_2 \triangleq 1 - I(B_2; Y)$ with average $\overline{\varepsilon} = (\varepsilon_1 + \varepsilon_2)/2$.
- $\bar{\varepsilon}$ characterizes the quality of the set of channels

Bit Mappings for SC-LDPC over Parallel BECs | Häger, Graell i Amat, Alvarado, Brännström, Agrell

AWGN channel using a labeled signal constellation:

- Individual channel qualities $\varepsilon_1 \triangleq 1 - I(B_1; Y), \ \varepsilon_2 \triangleq 1 - I(B_2; Y)$ with average $\overline{\varepsilon} = (\varepsilon_1 + \varepsilon_2)/2$.
- $\bar{\varepsilon}$ characterizes the quality of the set of channels
- Simplicity: replace the BICM bit channels by binary erasure channels (BECs)

AWGN channel using a labeled signal constellation:

- Individual channel qualities $\varepsilon_1 \triangleq 1 - I(B_1; Y), \ \varepsilon_2 \triangleq 1 - I(B_2; Y)$ with average $\overline{\varepsilon} = (\varepsilon_1 + \varepsilon_2)/2$.
- $\bar{\varepsilon}$ characterizes the quality of the set of channels
- Simplicity: replace the BICM bit channels by binary erasure channels (BECs)

System Model	Threshold and Optimization	Optimization Results	Conclusions	CHALMERS
O●O	000	00000	O	

• Two-sided and circular spatially coupled (d_v, d_c, L, w) code ensembles

- Two-sided and circular spatially coupled (d_v, d_c, L, w) code ensembles
- d_v and d_c denote the VN and CN degrees, L the spatial chain length, and w is a "smoothing"/coupling parameter

- Two-sided and circular spatially coupled (d_v, d_c, L, w) code ensembles
- d_v and d_c denote the VN and CN degrees, L the spatial chain length, and w is a "smoothing"/coupling parameter
- Example: Tanner graph of the (3, 6, 5, 2) ensemble

- Two-sided and circular spatially coupled (d_v, d_c, L, w) code ensembles
- d_v and d_c denote the VN and CN degrees, L the spatial chain length, and w is a "smoothing"/coupling parameter
- Example: Tanner graph of the (3, 6, 5, 2) ensemble

regular (3,6) LDPC ensemble

- Two-sided and circular spatially coupled (d_v, d_c, L, w) code ensembles
- d_v and d_c denote the VN and CN degrees, L the spatial chain length, and w is a "smoothing"/coupling parameter
- Example: Tanner graph of the (3, 6, 5, 2) ensemble

regular (3,6) LDPC ensemble

- Two-sided and circular spatially coupled (d_v, d_c, L, w) code ensembles
- d_v and d_c denote the VN and CN degrees, L the spatial chain length, and w is a "smoothing"/coupling parameter
- Example: Tanner graph of the (3, 6, 5, 2) ensemble

- Two-sided and circular spatially coupled (d_v, d_c, L, w) code ensembles
- d_v and d_c denote the VN and CN degrees, L the spatial chain length, and w is a "smoothing"/coupling parameter
- Example: Tanner graph of the (3, 6, 5, 2) ensemble

regular (3,6) LDPC ensemble

- Two-sided and circular spatially coupled (d_v, d_c, L, w) code ensembles
- d_v and d_c denote the VN and CN degrees, L the spatial chain length, and w is a "smoothing"/coupling parameter
- Example: Tanner graph of the (3, 6, 5, 2) ensemble

- Two-sided and circular spatially coupled (d_v, d_c, L, w) code ensembles
- d_v and d_c denote the VN and CN degrees, L the spatial chain length, and w is a "smoothing"/coupling parameter
- Example: Tanner graph of the (3, 6, 5, 2) ensemble

regular (3,6) LDPC ensemble

- Two-sided and circular spatially coupled (d_v, d_c, L, w) code ensembles
- d_v and d_c denote the VN and CN degrees, L the spatial chain length, and w is a "smoothing"/coupling parameter
- Example: Tanner graph of the (3, 6, 5, 2) ensemble

- Two-sided and circular spatially coupled (d_v, d_c, L, w) code ensembles
- d_v and d_c denote the VN and CN degrees, L the spatial chain length, and w is a "smoothing"/coupling parameter
- Example: Tanner graph of the (3, 6, 5, 2) ensemble

- Two-sided and circular spatially coupled (d_v, d_c, L, w) code ensembles
- d_v and d_c denote the VN and CN degrees, L the spatial chain length, and w is a "smoothing"/coupling parameter
- Example: Tanner graph of the (3, 6, 5, 2) ensemble

- Two-sided and circular spatially coupled (d_v, d_c, L, w) code ensembles
- d_v and d_c denote the VN and CN degrees, L the spatial chain length, and w is a "smoothing"/coupling parameter
- Example: Tanner graph of the (3, 6, 5, 2) ensemble

- Two-sided and circular spatially coupled (d_v, d_c, L, w) code ensembles
- d_v and d_c denote the VN and CN degrees, L the spatial chain length, and w is a "smoothing"/coupling parameter
- Example: Tanner graph of the (3, 6, 5, 2) ensemble

- Two-sided and circular spatially coupled (d_v, d_c, L, w) code ensembles
- d_v and d_c denote the VN and CN degrees, L the spatial chain length, and w is a "smoothing"/coupling parameter
- Example: Tanner graph of the (3, 6, 5, 2) ensemble

• Design rate $R=1-d_{\rm v}/d_{\rm c}-R_{\rm loss}(L),$ where $R_{\rm loss}(L)\to 0$ as $L\to\infty$

- Two-sided and circular spatially coupled (d_v, d_c, L, w) code ensembles
- d_v and d_c denote the VN and CN degrees, L the spatial chain length, and w is a "smoothing"/coupling parameter
- Example: Tanner graph of the (3, 6, 5, 2) ensemble

• Design rate $R = 1 - d_v/d_c - R_{loss}(L)$, where $R_{loss}(L) \to 0$ as $L \to \infty$

- Two-sided and circular spatially coupled (d_v, d_c, L, w) code ensembles
- d_v and d_c denote the VN and CN degrees, L the spatial chain length, and w is a "smoothing"/coupling parameter
- Example: Tanner graph of the (3, 6, 5, 2) ensemble

• Design rate $R = 1 - d_v/d_c - R_{loss}(L)$, where $R_{loss}(L) \to 0$ as $L \to \infty$
Spatially Coupled LDPC Codes

- Two-sided and circular spatially coupled (d_v, d_c, L, w) code ensembles
- d_v and d_c denote the VN and CN degrees, L the spatial chain length, and w is a "smoothing"/coupling parameter
- Example: Tanner graph of the (3, 6, 5, 2) ensemble

- Design rate $R = 1 d_v/d_c R_{loss}(L)$, where $R_{loss}(L) \to 0$ as $L \to \infty$
- For circular ensemble, $R = 1 d_v/d_c$ (no rate loss)

System Model		
000		CHALMERS

Bit Mapper

• VNs (i.e., code bits) at different positions belong to different equivalence classes

- VNs (i.e., code bits) at different positions belong to different equivalence classes
- Assignment of VN classes to channels via matrix A = [a_{i,j}] ∈ ℝ^{m×L}, where a_{i,j} ≜ fraction of VNs from position j to be sent over ith BEC

- VNs (i.e., code bits) at different positions belong to different equivalence classes
- Assignment of VN classes to channels via matrix A = [a_{i,j}] ∈ ℝ^{m×L}, where a_{i,j} ≜ fraction of VNs from position j to be sent over ith BEC
- Resulting VN erasure probablities $(\varepsilon^1, \dots, \varepsilon^L) = (\varepsilon_1, \dots, \varepsilon_m) \cdot \mathbf{A}$

rstem Model O●	Threshold and Optimization	Optimization Results 00000	Conclusions O	CHALMERS
		Bit Mapper		
			$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	
• Exa	mple: $\mathbf{A} = \begin{pmatrix} 1.0 & 0.0 \\ 0.0 & 1.0 \end{pmatrix}$	$\begin{array}{cccc} 0.5 & 0.75 & 0.25 \\ 0.5 & 0.25 & 0.75 \end{array}$)	

Häger, Graell i Amat, Alvarado, Brännström, Agrell

5/14

Häger, Graell i Amat, Alvarado, Brännström, Agrell

Häger, Graell i Amat, Alvarado, Brännström, Agrell

5/14

• Set of valid assignment matrices $\mathcal{A}^{m \times L}$: columns sum to 1 (all VNs are assigned), rows sum to L/m (all channels are used equally often)

- Set of valid assignment matrices $\mathcal{A}^{m \times L}$: columns sum to 1 (all VNs are assigned), rows sum to L/m (all channels are used equally often)
- Baseline bit mapper \mathbf{A}_{uni} with $a_{i,j} = 1/m$, $\forall i, j$

System Model	Threshold and Optimization	Optimization Results	Conclusions	CHALMERS
000	●00	00000	O	

Density Evolution for BECs

Threshold and Optimization			
000			CHALMERS
Density	Evelution for DE	C-	

Density Evolution for BECs

decoding failure

For BECs, density evolution is simple: Track the evolution of the VN erasure probabilities at all positions j.

0.2 0.4 0.6 0.8 1.0

ω 0.5 0.4 0.3

 $0.2 \ 0.4 \ 0.6 \ 0.8 \ 1.0$ $\bar{\varepsilon}$ decoding failure

$$p_j^{(l)} = \varepsilon^j \left(\frac{1}{w} \sum_{a=0}^w \left(1 - \left(1 - \frac{1}{w} \sum_{b=0}^w p_{j+a-b}^{(l-1)} \right)^{d_{\mathsf{c}}-1} \right) \right)^{d_{\mathsf{v}}-1}$$

0.3

 $0.2 \ 0.4 \ 0.6 \ 0.8 \ 1.0$ $\bar{\varepsilon}$

initial VN erasure probability -

$$p_{j}^{(l)} = \varepsilon^{j} \left(\frac{1}{w} \sum_{a=0}^{w} \left(1 - \left(1 - \frac{1}{w} \sum_{b=0}^{w} p_{j+a-b}^{(l-1)} \right)^{d_{c}-1} \right) \right)^{d_{c}-1}$$

 $0.2 \ 0.4 \ 0.6 \ 0.8 \ 1.0$ $\bar{\varepsilon}$ decoding failure

$$p_j^{(l)} = \varepsilon^j \left(\frac{1}{w} \sum_{a=0}^w \left(1 - \left(1 - \frac{1}{w} \sum_{b=0}^w p_{j+a-b}^{(l-1)} \right)^{d_{\mathsf{c}}-1} \right) \right)^{d_{\mathsf{v}}-1}$$

0.3

 $0.2 \ 0.4 \ 0.6 \ 0.8 \ 1.0$ $\bar{\varepsilon}$ decoding failure

$$p_{j}^{(l)} = \varepsilon^{j} \left(\frac{1}{w} \sum_{a=0}^{w} \left(1 - \left(1 - \frac{1}{w} \sum_{b=0}^{w} p_{j+a-b}^{(l-1)} \right)^{d_{c}-1} \right) \right)^{d_{c}-1}$$

• $\bar{\varepsilon}^*(\mathbf{A}) \triangleq \text{largest } \bar{\varepsilon} \in [0,1] \text{ such that } \lim_{l \to \infty} p_j^{(l)} \to 0, \, \forall j$

 $0.4 \\ 0.3$

 $\begin{array}{c}
 0.2 \\
 0.1 \\
 0
\end{array}$

Bit Mappings for SC-LDPC over Parallel BECs | Häger, Graell i Amat, Alvarado, Brännström, Agrell

Example for Baseline Bit Mapper $\mathbf{A}_{\mathsf{uni}}$

Example for Baseline Bit Mapper $\mathbf{A}_{\mathsf{uni}}$

• For \mathbf{A}_{uni} , we have $\varepsilon^j = 0.5\varepsilon_1 + 0.5\varepsilon_2 = \bar{\varepsilon}, \ \forall j$

Example for Baseline Bit Mapper \mathbf{A}_{uni}

- For A_{uni} , we have $\varepsilon^j = 0.5\varepsilon_1 + 0.5\varepsilon_2 = \bar{\varepsilon}, \forall j$
- For two-sided (3,6,10,2) ensemble, $\bar{\varepsilon}^*(\mathbf{A})\approx 0.488$

- For A_{uni} , we have $\varepsilon^j = 0.5\varepsilon_1 + 0.5\varepsilon_2 = \bar{\varepsilon}, \forall j$
- For two-sided (3,6,10,2) ensemble, $\bar{\varepsilon}^*(\mathbf{A})\approx 0.488$

• For two-sided (3, 6, 10, 2) ensemble, $\bar{\varepsilon}^*(\mathbf{A}) \approx 0.488$

• For two-sided (3, 6, 10, 2) ensemble, $\bar{\varepsilon}^*(\mathbf{A}) \approx 0.488$

- For \mathbf{A}_{uni} , we have $\varepsilon^j = 0.5\varepsilon_1 + 0.5\varepsilon_2 = \bar{\varepsilon}, \forall j$
- For two-sided (3,6,10,2) ensemble, $\bar{\varepsilon}^*(\mathbf{A})\approx 0.488$

- For \mathbf{A}_{uni} , we have $\varepsilon^j = 0.5\varepsilon_1 + 0.5\varepsilon_2 = \bar{\varepsilon}, \ \forall j$
- For two-sided (3,6,10,2) ensemble, $\bar{\varepsilon}^*(\mathbf{A})\approx 0.488$

• For two-sided (3,6,10,2) ensemble, $\bar{\varepsilon}^*(\mathbf{A})\approx 0.488$

Ŷ

• For two-sided (3,6,10,2) ensemble, $\bar{\varepsilon}^*(\mathbf{A})\approx 0.488$

Threshold and Optimization		
000		CHALMERS
		<u> </u>

Threshold and Optimization	Optimization Results 00000	CHALMERS

• Ideally, we would like to solve the problem

 $\label{eq:argmax} \mathbf{A}_{\mathsf{opt}} = \underset{\mathbf{A} \in \mathcal{A}^{m \times L}}{\operatorname{argmax}} \quad \bar{\varepsilon}^*(\mathbf{A}).$

Threshold and Optimization ○○●	Optimization Results 00000	CHALMERS

• Ideally, we would like to solve the problem

 $\label{eq:argmax} \mathbf{A}_{\mathsf{opt}} = \underset{\mathbf{A} \in \mathcal{A}^{m \times L}}{\operatorname{argmax}} \quad \bar{\varepsilon}^*(\mathbf{A}).$

• Difficult, due to computational cost of one threshold computation

Threshold and Optimization ○○●	Optimization Results 00000	CHALMERS

$$\mathbf{A}_{\mathsf{opt}} = \mathop{\mathsf{argmax}}_{\mathbf{A} \in \mathcal{A}^{m \times L}} \quad \bar{\varepsilon}^*(\mathbf{A}).$$

- Difficult, due to computational cost of one threshold computation
- Alternative iterative optimization to find good bit mappers:

Threshold and Optimization	Optimization Results	CHAI MERS
• • • •		OFIAEMERO

$$\mathbf{A}_{\mathsf{opt}} = \operatorname*{argmax}_{\mathbf{A} \in \mathcal{A}^{m imes L}} \quad ar{arepsilon}^*(\mathbf{A}).$$

- Difficult, due to computational cost of one threshold computation
- Alternative iterative optimization to find good bit mappers:
 - 1. Initialize $\bar{\varepsilon}$ to the threshold of the baseline bit mapper $\bar{\varepsilon}^*(\mathbf{A}_{\mathsf{uni}})$

Threshold and Optimization ○○●	Optimization Results 00000	CHAI MERS
• • • •		

$$\mathbf{A}_{\mathsf{opt}} = \operatorname*{argmax}_{\mathbf{A} \in \mathcal{A}^{m imes L}} \quad ar{arepsilon}^*(\mathbf{A}).$$

- Difficult, due to computational cost of one threshold computation
- Alternative iterative optimization to find good bit mappers:
 - 1. Initialize $\bar{\varepsilon}$ to the threshold of the baseline bit mapper $\bar{\varepsilon}^*(\mathbf{A}_{uni})$
 - 2. Find ${\bf A}^*$ that minimizes the number of decoding iterations until convergence. Here, we use Differential Evolution

Threshold and Optimization	Optimization Results 00000	CHAI MERS
• • • •		

$$\mathbf{A}_{\mathsf{opt}} = \operatorname*{argmax}_{\mathbf{A} \in \mathcal{A}^{m imes L}} \quad ar{arepsilon}^*(\mathbf{A}).$$

- Difficult, due to computational cost of one threshold computation
- Alternative iterative optimization to find good bit mappers:
 - 1. Initialize $\bar{\varepsilon}$ to the threshold of the baseline bit mapper $\bar{\varepsilon}^*(\mathbf{A}_{uni})$
 - 2. Find A^* that minimizes the number of decoding iterations until convergence. Here, we use Differential Evolution
 - 3. Calculate the new threshold. If it did not improve, stop, otherwise, go to step $2 \$

$$\mathbf{A}_{\mathsf{opt}} = \operatorname*{argmax}_{\mathbf{A} \in \mathcal{A}^{m imes L}} \quad ar{arepsilon}^*(\mathbf{A}).$$

- Difficult, due to computational cost of one threshold computation
- Alternative iterative optimization to find good bit mappers:
 - 1. Initialize $\bar{\varepsilon}$ to the threshold of the baseline bit mapper $\bar{\varepsilon}^*(\mathbf{A}_{uni})$
 - 2. Find **A**^{*} that minimizes the number of decoding iterations until convergence. Here, we use Differential Evolution
 - 3. Calculate the new threshold. If it did not improve, stop, otherwise, go to step $\mathbf{2}$
- Significantly reduced computational complexity, however, $\mathbf{A}_{\text{opt}} \neq \mathbf{A}^{\!*}$ in general

System Model 000	Threshold and Optimization	Optimization Results ●0000	Conclusions O	CHALMERS

	Optimization Results •0000	CHALMERS

	Optimization Results •0000	CHALMERS
—		

	Optimization Results •0000	CHALMERS

- Two-sided (4, 8, L, w) ensemble, where $L \in \{10, 15, ..., 40\}$ and $w \in \{2, 4\}$
- Gap to capacity $\Delta \triangleq 1 \bar{\varepsilon}^*(\mathbf{A}) R$

- Two-sided (4, 8, L, w) ensemble, where $L \in \{10, 15, ..., 40\}$ and $w \in \{2, 4\}$
- Gap to capacity $\Delta \triangleq 1 \bar{\varepsilon}^*(\mathbf{A}) R$

- Two-sided (4, 8, L, w) ensemble, where $L \in \{10, 15, ..., 40\}$ and $w \in \{2, 4\}$
- Gap to capacity $\Delta \triangleq 1 \bar{\varepsilon}^*(\mathbf{A}) R$

- Two-sided (4, 8, L, w) ensemble, where $L \in \{10, 15, ..., 40\}$ and $w \in \{2, 4\}$
- Gap to capacity $\Delta \triangleq 1 \bar{\varepsilon}^*(\mathbf{A}) R$

System Model Threshold and Optimization Optimization Results C 000 000 000 0 0 0	
--	--

Optimized Bit Mappers for w=2

Optimized Bit Mappers for w = 2

• First row (i = 1) of the optimized assignment matrices A^* (fraction of VNs at a particular position to be sent over the good channel)

Optimized Bit Mappers for w = 2

• First row (*i* = 1) of the optimized assignment matrices **A**^{*} (fraction of VNs at a particular position to be sent over the good channel)

 Shaded regions correspond to the part where a decoding wave will start (green), end (red), and propagate at roughtly constant speed (blue)

- Shaded regions correspond to the part where a decoding wave will start (green), end (red), and propagate at roughtly constant speed (blue)
- Illustration of the iterative decoding behavior:

- Shaded regions correspond to the part where a decoding wave will start (green), end (red), and propagate at roughtly constant speed (blue)
- Illustration of the iterative decoding behavior:

- Shaded regions correspond to the part where a decoding wave will start (green), end (red), and propagate at roughtly constant speed (blue)
- Illustration of the iterative decoding behavior:

- Shaded regions correspond to the part where a decoding wave will start (green), end (red), and propagate at roughtly constant speed (blue)
- Illustration of the iterative decoding behavior:

- Shaded regions correspond to the part where a decoding wave will start (green), end (red), and propagate at roughtly constant speed (blue)
- Illustration of the iterative decoding behavior:

- Shaded regions correspond to the part where a decoding wave will start (green), end (red), and propagate at roughtly constant speed (blue)
- Illustration of the iterative decoding behavior:

- Shaded regions correspond to the part where a decoding wave will start (green), end (red), and propagate at roughtly constant speed (blue)
- Illustration of the iterative decoding behavior:

- Shaded regions correspond to the part where a decoding wave will start (green), end (red), and propagate at roughtly constant speed (blue)
- Illustration of the iterative decoding behavior:

System Model	Threshold and Optimization	Optimization Results	Conclusions	CHALMERS
000	000	00000	O	

	Optimization Resul	ts Conclusion O	

• Circular (4, 8, L, w) ensemble, where $L \in \{10, 15, ..., 40\}$, $w \in \{2, 4\}$

	Optimization Results	CHALMERS

• Circular (4, 8, L, w) ensemble, where $L \in \{10, 15, ..., 40\}$, $w \in \{2, 4\}$

	Optimization Results	CHALMERS

• Circular (4, 8, L, w) ensemble, where $L \in \{10, 15, ..., 40\}$, $w \in \{2, 4\}$

- Circular (4, 8, L, w) ensemble, where $L \in \{10, 15, ..., 40\}$, $w \in \{2, 4\}$
- Design rate is R = 1/2 and the threshold for uniform mapper is $\bar{\varepsilon}^*(\mathbf{A}_{\mathsf{uni}}) = 0.3834$, independent of L and w

- Circular (4, 8, L, w) ensemble, where $L \in \{10, 15, ..., 40\}$, $w \in \{2, 4\}$
- Design rate is R = 1/2 and the threshold for uniform mapper is $\bar{\varepsilon}^*(\mathbf{A}_{\mathsf{uni}}) = 0.3834$, independent of L and w

System Model Threshold and Optimization Optimization Results Co 000 000 000 0 0 0	CHALMERS
---	----------

Optimized Bit Mappers for w=2

Optimized Bit Mappers for w = 2

• First row (*i* = 1) of the optimized assignment matrices **A**^{*} (fraction of VNs at a particular position to be sent over the good channel)

Optimized Bit Mappers for w=2

• First row (*i* = 1) of the optimized assignment matrices **A**^{*} (fraction of VNs at a particular position to be sent over the good channel)

• Different channel qualities can be exploited to create a boundary-like termination effect

Bit Mappings for SC-LDPC over Parallel BECs | Häger, Graell i Amat, Alvarado, Brännström, Agrell

		Optimization Results	
000	000	00000	CHALMERS

BICM Verification

	Optimization Results	
	00000	CHALMERS
	NA N/ 101 11	

BICM Verification

• Without going into details: BICM assuming max-log approximation for LLR computation and LLR symmetrization

	Optimization Results	CHAI MERS
BIC	M Verification	

VI VEHILALIOH

- Without going into details: BICM assuming max-log approximation for LLR computation and LLR symmetrization
- Discretized density evolution thresholds for circular (4, 8, L, 2) ensembles using bit mappers optimized for BECs

	Optimization Results 0000●	CHAIMERS
BIC	M Varification	

- Without going into details: BICM assuming max-log approximation for LLR computation and LLR symmetrization
- Discretized density evolution thresholds for circular (4, 8, L, 2) ensembles using bit mappers optimized for BECs

- Without going into details: BICM assuming max-log approximation for LLR computation and LLR symmetrization
- Discretized density evolution thresholds for circular (4, 8, L, 2) ensembles using bit mappers optimized for BECs

System Model	Threshold and Optimization	Optimization Results	Conclusions	CHALMERS
000	000	00000	•	

1. Decoding threshold can be improved over a uniform random bit mapper, or, alternatively, the spatial chain length can be reduced.

- 1. Decoding threshold can be improved over a uniform random bit mapper, or, alternatively, the spatial chain length can be reduced.
- 2. For circular ensembles, different channel qualities can be exploited to obtain wave-like decoding behavior similar to terminated ensembles

- 1. Decoding threshold can be improved over a uniform random bit mapper, or, alternatively, the spatial chain length can be reduced.
- 2. For circular ensembles, different channel qualities can be exploited to obtain wave-like decoding behavior similar to terminated ensembles

Future work include study of protograph-based ensembles (for finite length code design).

- 1. Decoding threshold can be improved over a uniform random bit mapper, or, alternatively, the spatial chain length can be reduced.
- 2. For circular ensembles, different channel qualities can be exploited to obtain wave-like decoding behavior similar to terminated ensembles

Future work include study of protograph-based ensembles (for finite length code design).

Paper version available on Arxiv (submitted to ICC 2014): Häger, Graell i Amat, Alvarado, Bränström, Agrell - Optimized Bit Mappers for Spatially Coupled LDPC Codes over Parallel Erasure Channels, Sep. 2013

- 1. Decoding threshold can be improved over a uniform random bit mapper, or, alternatively, the spatial chain length can be reduced.
- 2. For circular ensembles, different channel qualities can be exploited to obtain wave-like decoding behavior similar to terminated ensembles

Future work include study of protograph-based ensembles (for finite length code design).

Paper version available on Arxiv (submitted to ICC 2014): Häger, Graell i Amat, Alvarado, Bränström, Agrell - Optimized Bit Mappers for Spatially Coupled LDPC Codes over Parallel Erasure Channels, Sep. 2013

Thank you!