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Channel Coding

It is possible to provide (almost) error-free performance, even in the presence of
bit-flipps.
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Coding and Decoding

1. Coding means
e Transmitting more bits n > k,
e and not allowing all combinations of 0 and 1.
e A code with rate k/n is defined as C C {0, 1}".

e A codeword x is an element in the Code, i.e., ¢ € C.

2. (Optimal) Decoding means
o After observing the corrupted bits y,

e guessing the selected codeword by solving the inference problem
Z = argmax p(z|y).
zeC
e It turns out that for our channel (and equiprobable codewords)

& = argmindy(z, y),
zeC

where dy is the Hamming distance.
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Optimally solving the inference problem becomes impractical for long codes.
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e Linear cost function and m linear inequality constraints

e min/max ¢’z st. Az > b.
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The optimal solution is always
found at a corner point (vertex)
of the polytope described by the
constraints.
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Main ldea

Formulation of the decoding problem as a linear program with efficient
polytopes (in the number of constraints).

e The objective function is already linear:

n
5 _ ind _ . -
& = argmindu(z, y) = arg glelg; TiYi
o Replace the optimization over C by an optimization over a relaxed
polytope P C [0, 1]™:
n

TLp = arg ggg Z ZiYi- (1)
i=1

e LP Decoding: Solve (1). Output Z.p if the solution is integral (€ {0,1}"),
otherwise output “error”.
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How should we choose P?
Recall that the output of the linear programm is always a vertex of P.
Proper polytope if PN {0,1}" =C.

ML Certificate: If the LP decoder outputs an integral solution, it is the
optimal codeword.

Remarkable property for a suboptimal decoder

Choosing P as the convex hull of C recovers the optimal decoder, but is
again impractical.
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binary code C dmin optimal decoding success guarantee
polytope P dfrac LP decoding success guarantee
Theorem
The LP decoder using P is successful if at most [dfac/2] — 1 bits are flipped. J

2. Symmetric Polytopes

entity property consequence
binary code C is linear error prob. does not depend on x
polytope P is C-symmetric error prob. does not depend on x
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Figure 6. BEP after 20 iterations as a function of the SNR, with optimized
values of p.

13/14



Some Results

ooe CHALMERS
Learning Objectives

14/14



Some Results

ooe CHALMERS
Learning Objectives

You should now be able to

14/14



Some Results

ooe CHALMERS
Learning Objectives

You should now be able to

e understand the basic idea behind error-correcting codes and geometrically
visualize the process of decoding,

14/14



Some Results

ooe CHALMERS
Learning Objectives

You should now be able to

e understand the basic idea behind error-correcting codes and geometrically
visualize the process of decoding,

e solve linear programs, and

14/14



Some Results

ooe CHALMERS

Learning Objectives

You should now be able to
e understand the basic idea behind error-correcting codes and geometrically
visualize the process of decoding,
e solve linear programs, and
e not dispair when someone tells you that your problem is NP-hard.

14/14



	Introduction
	Slides

	The Inference Problem
	Slides

	Linear Programming Approach
	Slides

	Some Results
	Slides


