Density Evolution and LDPC Convolutional Codes Lentmaier *et al.* (2009) – Approaching Capacity with Asymptotically Regular LDPC Codes Urbanke (2010) – Spatially Coupled Codes – A New Paradigm for Code Design (Talk at KTH)

Christian Häger

Department of Signals and Systems Communication Systems Group Chalmers University of Technology Gothenburg, Sweden

ECC Seminar - May 29, 2012

LDPCC OO		CHALMERS

- 1. Density Evolution for the Binary Erasure Channel
- 2. From LDPC Block to LDPC Convolutional Codes
- 3. Threshold Results
- 4. Conclusion

Density Evolution ●000		CHAIMERS

Density Evolution •000		CHALMERS
		ONALMENC

• Density evolution provides a threshold that divides the channel parameter range into an admissable and a non-admissable region.

- Density evolution provides a threshold that divides the channel parameter range into an admissable and a non-admissable region.
- Consider the binary erasure channel:

- Density evolution provides a threshold that divides the channel parameter range into an admissable and a non-admissable region.
- Consider the binary erasure channel:

• Here, density evolution is particularly simple: Track the average probability $p^{(l)}$ of an erasure after l iterations.

•
$$(l = 0)$$
: 0 1 0 e 1 0 1 e e 1 0 ... $p^{(0)} = \varepsilon$
• $(l = 1)$: 0 1 0 0 1 0 1 1 e 1 0 ... $p^{(1)} = ?$
• ...

Density Evolution			
	00	66	 CHALMERS

Density Evolution	LDPCC 00	Thresholds 00	CHAIMEDS
			CHALMERS

• Channel:

$$L_{j} = \begin{cases} +\infty, & y_{j} = 0 \\ -\infty, & y_{j} = 1 \\ 0, & y_{j} = e \end{cases}$$

Density Evolution	LDPCC		
0000			CHALMERS

• Channel:

$$L_{j} = \begin{cases} +\infty, & y_{j} = 0\\ -\infty, & y_{j} = 1\\ 0, & y_{j} = e \end{cases}$$

• Check node (CN) update:

$$L_{i \to j} = 2 \tanh^{-1} \left(\prod_{j' \in N(i) - \{j\}} \tanh\left(\frac{1}{2} L_{j' \to i}\right) \right)$$

Density Evolution		
0000		CHALMERS

• Channel:

$$L_{j} = \begin{cases} +\infty, & y_{j} = 0\\ -\infty, & y_{j} = 1\\ 0, & y_{j} = e \end{cases}$$

• Check node (CN) update:

$$L_{i \to j} = 2 \tanh^{-1} \left(\prod_{j' \in N(i) - \{j\}} \tanh\left(\frac{1}{2} L_{j' \to i}\right) \right)$$

• Variable node (VN) update:

$$L_{j \to i} = L_j + \sum_{i' \in N(j) - \{i\}} L_{i' \to j}$$

Density Evolution		
0000		CHALMERS
		<u> </u>

- $p^{(l)}$: probability that an outgoing VN message is an erasure, with $p^{(0)}=\varepsilon$

- $p^{(l)}$: probability that an outgoing VN message is an erasure, with $p^{(0)}=\varepsilon$
- $q^{(l)}$: probability that an outgoing CN message is an erasure

 $q^{(l)} = 1 - (1 - p^{(l-1)})^{k-1}$

$$q^{(l)} = 1 - (1 - p^{(l-1)})^{k-1}$$

$$q^{(l)} = 1 - (1 - p^{(l-1)})^{k-1}$$

$$q^{(l)} = 1 - (1 - p^{(l-1)})^{k-1}$$

$$p^{(l)} = \varepsilon (q^{(l)})^{k-1}$$

$$q^{(l)} = 1 - (1 - p^{(l-1)})^{k-1}$$

$$p^{(l)} = \varepsilon(q^{(l)})^{k-1}$$

$$q^{(i)} = 1 - (1 - p^{(i-1)})^{i}$$

$$p^{(l)} = \varepsilon (q^{(l)})^{k-1}$$

$$q^{(l)} = 1 - (1 - p^{(l-1)})^{k-1}$$

$$p^{(l)} = \varepsilon (q^{(l)})^{k-1}$$

 Averaged over all VNs and CNs (λ(x) is the VN degree distribution, ρ(x) is the CN degree distribution):

$$p^{(l)} = \varepsilon \lambda (1 - \rho(1 - p^{(l-1)}))$$

Threshold Example (Capacity C = 0.5)

Example

• Regular (3, 6) LDPC block code ensemble, rate R = 1/2:

$$\rho(x) = x^5 \qquad \lambda(x) = x^2$$

• Threshold $\varepsilon^* = 0.429$

Example

• Regular (5, 10) LDPC block code ensemble, rate R = 1/2:

$$\rho(x) = x^9 \qquad \lambda(x) = x^4$$

• Threshold $\varepsilon^* = 0.341$

• Protograph = prototype graph

• Tanner graph of the code results from a copy-and-permute procedure that preserves the degree distribution of all nodes

- Tanner graph of the code results from a copy-and-permute procedure that preserves the degree distribution of all nodes
- Imposes structure on the resulting LDPC code ensemble

- Tanner graph of the code results from a copy-and-permute procedure that preserves the degree distribution of all nodes
- Imposes structure on the resulting LDPC code ensemble
- Now the erasure probabilities are functions of the edges:

$$q^{(l)}(e_{i \to j}) = 1 - \prod_{j' \in N(i) - \{j\}} (1 - p^{(l-1)}(e_{j' \to i}))$$

$$p^{(l)}(e_{j \to i}) = \varepsilon \prod_{i' \in N(i) - \{j\}} q^{(l)}(e_{i' \to j})$$

Density Evolution	LDPCC	Thresholds	Conclusion	CHALMERS
0000	●O	00	00	

Density Evolution	LDPCC	Thresholds	Conclusion	CHALMERS
0000	●O	00	00	

LDPCC ●O		CHALMERS

LDPCC ●O		CHALMERS

LDPCC ●O		CHALMERS

Density Evolution	LDPCC	Thresholds	Conclusion	CHALMERS
0000	●O	00	00	

LDPCC ●O		CHALMERS

LDPCC		
00		CHALMERS
	D	

Properties

LDPCC O●		CHALMERS

LDPCC O●		CHALMERS

• Rate loss due to termination (additional check nodes)

Density Evolution	LDPCC	Thresholds	Conclusion	CHALMERS
0000	O●	00	OO	

- Rate loss due to termination (additional check nodes)
- Slight irregularities of the CN degrees at the beginning and end of the protograph

Density Evolution	LDPCC	Thresholds	Conclusion	CHALMERS
0000	O●	00	OO	

- Rate loss due to termination (additional check nodes)
- Slight irregularities of the CN degrees at the beginning and end of the protograph
- However, as the number of protograph copies *L* grows large, the code becomes asymptotically regular and the rate loss becomes negligable

LDPCC	Thresholds	
	•0	CHALMERS

Thresholds for Protograph-based LDPC Convolutional Codes

LDPCC	Thresholds	
	•0	CHALMERS

Thresholds for Protograph-based LDPC Convolutional Codes

• Based on (3,6) LDPC Block protograph ($\varepsilon^* = 0.429$):

L	R_L	ε_L^*	$arepsilon_{Sh}(R_L)$
5	0.300	0.587	0.700
10	0.400	0.504	0.600
20	0.450	0.488	0.550
40	0.475	0.488	0.525
∞	0.500	0.488	0.500

	Thresholds	
	•0	CHALMERS

Thresholds for Protograph-based LDPC Convolutional Codes

• Based on (3,6) LDPC Block protograph ($\varepsilon^* = 0.429$):

L	R_L	ε_L^*	$\varepsilon_{Sh}(R_L)$
5	0.300	0.587	0.700
10	0.400	0.504	0.600
20	0.450	0.488	0.550
40	0.475	0.488	0.525
∞	0.500	0.488	0.500

L	R_L	ε_L^*	$\varepsilon_{Sh}(R_L)$
5	0.100	0.625	0.900
10	0.300	0.512	0.700
20	0.400	0.499	0.600
40	0.450	0.499	0.550
∞	0.500	0.499	0.500

	Thresholds ○●	
		OFICENER

Erasure Probability Evolution at $\varepsilon = 0.483$, L = 20, (3,6) LDPC code

	Conclusion • O	CHALMERS
		OFIALMERO

LDPCC		Conclusion	
		0	CHALMERS
	Conclusion		

• Asymptotically regular protograph ensembles are capable of approaching capacity

		Conclusion	
		0	CHALMERS
	Conclusion		

- Asymptotically regular protograph ensembles are capable of approaching capacity
- Spatial coupling and termination leads to slight irregularities of the CN degrees

		Conclusion	
		0	CHALMERS
	Conclusion		

- Asymptotically regular protograph ensembles are capable of approaching capacity
- Spatial coupling and termination leads to slight irregularities of the CN degrees
- Same effect is also present for other channels, e.g., AWGN

	Conclusion	
	00	CHALMERS

Thank you!