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[Essiambre and Winzer, 2005], [Roberts et al., 2006], [Li et al., 2008], [Ip and Kahn, 2008])
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requires roughly 6.6 W of power or ≈ 83 pJ/bit in 28-nm CMOS

• Comparable to published results for static chromatic dispersion (CD)
compensation

• [Pillai et al., 2014]: ≈ 94 pJ/bit for 2400 km in 28 nm
• [Crivelli et al., 2014]: ≈ 221 pJ/bit for 3500 km in 40 nm

Key ingredients

1. No FFT/IFFT: We use finite-impulse response (FIR) filters to compensate
for CD-induced pulse broadening in each step.

2. Deep learning: The FIR filters are jointly optimized and quantized using
machine-learning tools.

3. No step-reducing approaches: 64-step DBP (2 steps per span) would
consume only marginally more power, not 2× more.
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[Yan et al., 2011], [Napoli et al., 2014], [Secondini et al., 2016], . . .

• Complexity increases with the number of steps M

• Therefore, reduce M as much as possible (step-reducing approaches)

• Intuitive, but . . .

• . . . this corresponds to flattening a deep (multi-layer) computation graph

• Machine learning: deep computation graphs work much better and are
more parameter efficient than shallow ones
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How to optimize θ = {W (1), . . . , W (ℓ), b(1), . . . , b(ℓ)}? Deep learning

min
θ

N∑

i=1

Loss(fθ(y(i)), x
(i)) , g(θ) using θk+1 = θk − λ∇θg(θk) (1)
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[Martins et al., 2018]

Nontrivial to achieve a good performance–complexity tradeoff!

Example for Rsymb = 10.7 Gbaud, L = 2000 km [Ip and Kahn, 2008]

• ≫ 1000 taps required for good performance (70 taps per step)
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Our approach:
Optimize all M filters jointly

10 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Outline

1. Introduction to Digital Backpropagation

2. Connection between Deep Learning and Digital Backpropagation

3. Joint Chromatic Dispersion Filter Optimization

4. ASIC Implementation Aspects

5. Results: Performance, Power Consumption, and Chip Area

6. Conclusions

11 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Joint Chromatic Dispersion Filter Optimization via Deep Learning

12 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Joint Chromatic Dispersion Filter Optimization via Deep Learning

TensorFlow implementation of the computation graph fθ(y):

h(1) h(2) h(M)

Aδ ...

σ1(x) = xeγ1|x|2

Aδ ...

σ2(x) = xeγ2|x|2

bbb Aδ ...

σM (x) = xeγM |x|2

12 / 20



Introduction Deep Learning Joint Filter Optimization ASIC Implementation Results Conclusions

Joint Chromatic Dispersion Filter Optimization via Deep Learning

TensorFlow implementation of the computation graph fθ(y):

h(1) h(2) h(M)

Aδ ...

σ1(x) = xeγ1|x|2

Aδ ...

σ2(x) = xeγ2|x|2

bbb Aδ ...

σM (x) = xeγM |x|2

mean squared error Adam optimizer, fixed learning rate

Deep learning of parameters θ = {h(1), . . . , h(M)}:

min
θ

N∑

i=1

Loss(fθ(y(i)), x
(i)) , g(θ) using θk+1 = θk − λ∇θg(θk)
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• Fake quantization: gradient computation and parameter updates are still
performed in floating point

• Activate after the (floating-point) optimization has converged and
continue training for few more iterations

• Joint optimization of quantized impulse responses =⇒ partial
cancellation of quantization-induced frequency-response errors
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≈ x(1 + γδℓ|x|2)

• 96-parallel VHDL implementation at 416.7 MHz clock speed (40 GHz RX
signal), synthesized using a low-power 28-nm CMOS library

• All FIR filters are fully reconfigurable

• Power estimation based on simulation of internal circuit switching statistics
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• single channel

• Deep learning gives 15-tap filters with better performance

• 8–9 signal bits required in both cases, depending on performance

• Deep learning leads to significantly fewer bits for the filter taps
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• > 40% power & area reduction for learned filters due to fewer taps and bits

• Estimate for 9-bit signal, 6-bit learned coefficients:

• 33 × 0.2 W = 6.6 W or ≈ 83 pJ/bit
• 33 × 0.81 mm2 = 27 mm2

• Comparable to published results for static chromatic dispersion (CD)
compensation

• [Pillai et al., 2014]: ≈ 94 pJ/bit for 2400 km in 28 nm
• [Crivelli et al., 2014]: ≈ 221 pJ/bit for 3500 km in 40 nm
• [Crivelli et al., 2014]: entire RX chip is 75 mm2 with CD compensation

occupying a relatively large fraction
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• Split-step digital backpropagation appears feasible for real-time DSP
implementation using a time-domain approach for the linear steps

• Deep learning can be used to

• jointly optimize all chromatic dispersion filters
• prune filter taps to get very short filters
• jointly quantize all filter coefficients

Thank you!
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