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“Multi-layer” vs. “Multi-step”
Deep Learning [LeCun et al., 2015] Deep Q-Learning [Mnih et al., 2015] ResNet [He et al., 2015]

· · ·

Multi-layer neural networks: impressive performance, countless applications

[Du and Lowery, 2010] [Nakashima et al., 2017]

Conventional wisdom: Steps are inefficient =⇒ reduce as much as possible

• “with only four steps for the entire link . . . ” [Du and Lowery, 2010]
• “up to 80% reduction in required [. . . ] steps” [Rafique et al., 2011]
• “it reduces 85% back-propagation stages [. . . ]” [Yan et al., 2011]
• “considerably reduces the number of spans needed ” [Napoli et al., 2014]
• “single-step digital backpropagation” [Secondini et al., 2016]
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In this talk, we . . .

1. show that multi-layer neural networks and the split-step method have the
same functional form: both alternate linear and pointwise nonlinear steps

2. propose a physics-based machine-learning approach based on
parameterizing the split-step method (no black-box neural networks)

3. revisit hardware-efficient multi-step nonlinear equalization via learned
digital backpropagation
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Supervised Learning
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28 × 28 pixels =⇒ n = 784
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How to optimize θ = {W (1), . . . , W (ℓ), b(1), . . . , b(ℓ)}?

Given a data set D = {(y(i), x(i))}N
i=1, where y(i) are model inputs and x(i)

are labels, we iteratively minimize

1

|Bk|

∑

(y,x)∈Bk

L(fθ(y), x) , g(θ) using θk+1 = θk − λ∇θg(θk)

Are there other ways to design good fθ?

Our contribution: designing “neural-network-like” models by exploiting the
underlying physics of the propagation
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• Deterministic channel model: partial differential equation

• Split-step method with M steps (δ = L/M):

Aδx .
.
.

σδ(x) = xe
−γδ|x|2

Kerr effect

D
F

T

.

.

. ID
F

T

Hk = e


β2
2

δω2
k chromatic dispersion (all-pass filter)

Aδ .
.
.

bbb Aδ .
.
.

≈ y

8 / 19



Machine Learning Physics-Based Models Learned DBP Conclusions

Deep Learning [LeCun et al., 2015] Deep Q-Learning [Mnih et al., 2015] ResNet [He et al., 2015]

· · ·

[Du and Lowery, 2010] [Nakashima et al., 2017]
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• Parameterize all linear steps: fθ with θ = {A
(1), . . . , A

(M)}

[Häger & Pfister, 2018], Nonlinear Interference Mitigation via Deep Neural Networks, (OFC)
[Häger & Pfister, 2021], Physics-Based Deep Learning for Fiber-Optic Communication Systems, IEEE J. Sel. Areas Commun.
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• This almost looks like a deep neural net!

• Parameterize all linear steps: fθ with θ = {A
(1), . . . , A

(M)}

• Special cases: step-size optimization, nonlinear operator “placement”, . . .

[Häger & Pfister, 2018], Nonlinear Interference Mitigation via Deep Neural Networks, (OFC)
[Häger & Pfister, 2021], Physics-Based Deep Learning for Fiber-Optic Communication Systems, IEEE J. Sel. Areas Commun.
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• Activation function is fixed; number of layers = number of steps
• Hidden feature representations ≈ signal at intermediate fiber locations
• Parameter initialization based on conventional split-step method

• How to limit the number of parameters (complexity)? X

• Propagation dynamics are “embedded” in the model through nonlinear steps
• Filter symmetry can be enforced in the linear steps
• Model compression (e.g., parameter pruning, quantization)

• How to interpret the solutions? Any insight gained? X

• Learned parameter configurations are interpretable
• Satisfactory explanations for benefits over previous handcrafted solutions
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Real-Time Digital Backpropagation

[Crivelli et al., 2014]

• Invert a PDE in real time [Essiambre and Winzer, 2005], [Roberts et al., 2006],

[Li et al., 2008], [Ip and Kahn, 2008]: widely considered to be impractical
• Complexity increases with the number of steps M =⇒ reduce M as

much as possible (see, e.g., [Du and Lowery, 2010], [Rafique et al., 2011],

[Li et al., 2011], [Yan et al., 2011], [Napoli et al., 2014], [Secondini et al., 2016], . . . )
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• Invert a PDE in real time [Essiambre and Winzer, 2005], [Roberts et al., 2006],

[Li et al., 2008], [Ip and Kahn, 2008]: widely considered to be impractical
• Complexity increases with the number of steps M =⇒ reduce M as

much as possible (see, e.g., [Du and Lowery, 2010], [Rafique et al., 2011],

[Li et al., 2011], [Yan et al., 2011], [Napoli et al., 2014], [Secondini et al., 2016], . . . )
• Intuitive, but . . . this flattens a deep (multi-layer) computation graph

Our approach: many steps but model compression

Joint optimization, pruning, and quantization of all linear steps
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Learned Digital Backpropagation

TensorFlow implementation of the computation graph fθ(y):
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mean squared error Adam optimizer, fixed learning rate

Deep learning of all FIR filter coefficients θ = {h(1), . . . , h(M)}:
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Iteratively prune (set to 0) outermost filter taps during gradient descent
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Iterative Filter Tap Pruning
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Revisiting Ip and Kahn (2008)
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• 25 × 80 km SSFM

• Gaussian modulation

• RRC pulses (0.1 roll-off)

• 10.7 Gbaud

• 2 samples/symbol processing

• single channel, single pol.
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• ≫ 1000 total taps (70 taps/step) =⇒ > 100× complexity of EDC

• Learned approach uses only 77 total taps: alternate 5 and 3 taps/step
and use different filter coefficients in all steps [Häger and Pfister, 2018a]

• Can outperform “ideal DBP” in the nonlinear regime [Häger and Pfister, 2018b]
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Extensions & Experimental Investigations

Wideband & WDM signals

• [Häger and Pfister, 2018], Wideband time-domain digital backpropagation via subband
processing and deep learning, (ECOC)

ASIC implementation & finite-precision aspects

• [Fougstedt et al., 2018], ASIC implementation of time-domain digital backpropagation with
deep-learned chromatic dispersion filters, (ECOC)

Polarization-dependent Effects (PMD)

• [Bütler et al., 2021], Model-based Machine Learning for Joint Digital Backpropagation and
PMD Compensation, (J. Lightw. Technol.), see arXiv:2010.12313

Experimental demonstrations & implementation aspects (e.g., phase noise)

• [Oliari et al., 2020], Revisiting Efficient Multi-step Nonlinearity Compensation with Machine
Learning: An Experimental Demonstration, (J. Lightw. Technol.)

• [Sillekens et al., 2020], Experimental Demonstration of Learned Time-domain Digital
Back-propagation, (Proc. IEEE Workshop on Signal Processing Systems)

• [Fan et al., 2020], Advancing Theoretical Understanding and Practical Performance of Signal
Processing for Nonlinear Optical Communications through Machine Learning,
(Nat. Commun.)

• [Bitachon et al., 2020], Deep learning based Digital Back Propagation Demonstrating SNR
gain at Low Complexity in a 1200 km Transmission Link, (Opt. Express)
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Outline

1. Machine Learning and Neural Networks

2. Physics-Based Machine Learning for Fiber-Optic Communications

3. Learned Digital Backpropagation

4. Conclusions
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Conclusions
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Conclusions

• We have proposed a physics-based machine-learning approach for
fiber-optic communication systems

• We have revisited efficient multi-step digital backpropagation and shown
that deep-learning tools can be used to

• jointly optimize all linear substeps
• prune filter taps to get very short filters
• jointly quantize all filter coefficients

• Multi-step enables factorization into simple, elementary steps

[Häger & Pfister, 2020], “Physics-Based Deep Learning for Fiber-Optic Communication Systems”,
in IEEE J. Sel. Areas Commun. (to appear), see https://arxiv.org/abs/2010.14258

Code: https://github.com/chaeger/LDBP
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• We have proposed a physics-based machine-learning approach for
fiber-optic communication systems

• We have revisited efficient multi-step digital backpropagation and shown
that deep-learning tools can be used to

• jointly optimize all linear substeps
• prune filter taps to get very short filters
• jointly quantize all filter coefficients

• Multi-step enables factorization into simple, elementary steps

[Häger & Pfister, 2020], “Physics-Based Deep Learning for Fiber-Optic Communication Systems”,
in IEEE J. Sel. Areas Commun. (to appear), see https://arxiv.org/abs/2010.14258

Code: https://github.com/chaeger/LDBP

Thank you!
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