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Fiber-Optic Communications

Fiber-optic communication systems enable high-speed data traffic (100 Gbit/s
per channel or higher) over very long distances.
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e Key challenge: complexity constraints due to very high data rates

Machine learning for low-complexity real-time channel inversion

This talk J
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1. Channel Modeling and the Nonlinear Schrédinger Equation
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e Invert a partial differential equation in real time ([Paré et al., 1996],
[Essiambre and Winzer, 2005], [Roberts et al., 2006], [Li et al., 2008], [Ip and Kahn, 2008])
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e Invert a partial differential equation in real time ([Paré et al., 1996],
[Essiambre and Winzer, 2005], [Roberts et al., 2006], [Li et al., 2008], [Ip and Kahn, 2008])

e Split-step Fourier method with M steps (6 = L/M):
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t X T = Kerr effect
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Hy = e’ 2 %% chromatic dispersion (all-pass filter)
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e Widely considered to be impractical (too complex): linear equalization is
already one of the most power hungry DSP blocks in coherent receivers
o Complexity increases with the number of steps M = reduce M as
much as possible (see, e.g., [Du and Lowery, 2010], [Rafique et al., 2011],
[Li et al., 2011], [Yan et al., 2011], [Napoli et al., 2014], [Secondini et al., 2016], . . )
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already one of the most power hungry DSP blocks in coherent receivers

o Complexity increases with the number of steps M = reduce M as
much as possible (see, e.g., [Du and Lowery, 2010], [Rafique et al., 2011],
[Li et al., 2011], [Yan et al., 2011], [Napoli et al., 2014], [Secondini et al., 2016], . . )

e Intuitive, but ... this flattens a deep (multi-layer) computation graph

e Machine learning: deep computation graphs tend to work better and can
be more parameter efficient than shallow ones

Main contribution
e Joint optimization of all linear steps leads to efficient channel inversion

e Power consumption comparable to published results for linear equalization
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2. Connection to Deep Learning
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[Li et al., 2008]: “To facilitate real-time implementation, the dispersion
... operator can be realized using a finite impulse response (FIR) filter”

[Zhu et al., 2009]

2010 2015 2018

[Goldfarb and Li, 2009]: “FIR filtering is highly compatible with real-time
DSP implementation, as compared to other filtering techniques”

[Ip and Kahn, 2008]: “In a real-time implementation, we replace the FFT ... with a linear filter”
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[Zhu et al., 2009] [Hager and Pfister, 2018]
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Deep learning of parameters 6 = {h(l), ey h(M)}: J

mlnz Loss(fo(y™), z") £ ¢(6) using  Ory1 = 0k — AVg(0r)

mean squared error Adam optimizer, fixed learning rate

e How to choose the starting point 6y and get short filters?

e Pre-optimization possible via multi-objective optimization problem
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e 28-nm CMOS synthesis results show ~ 2-fold power and area reduction
compared to baseline filters (slightly different system parameters)

e Power consumption comparable to linear equalization in
[Pillai et al., 2014],[Crivelli et al., 2014]

e Nonlinearities consume < 20% of the total power
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Conclusions

e We have addressed the problem of inverting the nonlinear Schrédinger
equation for fiber-optic systems in real time

e Established numerical method (split-step Fourier method) leads to a
computation graph reminiscient of a deep feed-forward neural network

o Deep learning in the resulting computation graph can be interpreted as a
joint filter (i.e., linear propagator) optimization problem

e This approach requires significantly fewer parameters than previous
methods = less complexity and power consumption
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Conclusions

We have addressed the problem of inverting the nonlinear Schrédinger
equation for fiber-optic systems in real time

Established numerical method (split-step Fourier method) leads to a
computation graph reminiscient of a deep feed-forward neural network

Deep learning in the resulting computation graph can be interpreted as a
joint filter (i.e., linear propagator) optimization problem

This approach requires significantly fewer parameters than previous
methods = less complexity and power consumption

Thank you!

FIORCE Duke

FIBER-OPTIC COMMUNICATIONS
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