A Deterministic Construction and Density Evolution Analysis for Generalized Product Codes

Christian Häger ${ }^{1}$ Henry D. Pfister ${ }^{2}$ Alexandre Graell i Amat ${ }^{1}$ Fredrik Brännström ${ }^{1}$ Erik Agrell ${ }^{1}$
${ }^{1}$ Department of Signals and Systems, Chalmers University of Technology, Gothenburg
${ }^{2}$ Department of Electrical and Computer Engineering, Duke University, Durham

2016 International Zurich Seminar on Communications March 2, 2016

FIBER-OPTIC COMMUNICATIONS RESEARCH CENTER

Motivation

Motivation

- Error-correcting codes for fiber-optical communications: Generalized product codes with iterative bounded-distance decoding are appealing due to syndrome compression at high code rates (low complexity)

Motivation

- Error-correcting codes for fiber-optical communications: Generalized product codes with iterative bounded-distance decoding are appealing due to syndrome compression at high code rates (low complexity)
- Code proposals are often very structured (i.e., deterministic):
- Conventional product codes [Justesen et al., 2010],
- Spatially-coupled (or convolutional-like) versions such as staircase codes [Smith et al., 2012] and braided codes [Jian et al., 2013]

Motivation

- Error-correcting codes for fiber-optical communications: Generalized product codes with iterative bounded-distance decoding are appealing due to syndrome compression at high code rates (low complexity)
- Code proposals are often very structured (i.e., deterministic):
- Conventional product codes [Justesen et al., 2010],
- Spatially-coupled (or convolutional-like) versions such as staircase codes [Smith et al., 2012] and braided codes [Jian et al., 2013]
- However, asymptotic analysis is typically based on density evolution using an ensemble argument ([Jian et al., 2012] and [Zhang et al., 2015])

Motivation

- Error-correcting codes for fiber-optical communications: Generalized product codes with iterative bounded-distance decoding are appealing due to syndrome compression at high code rates (low complexity)
- Code proposals are often very structured (i.e., deterministic):
- Conventional product codes [Justesen et al., 2010],
- Spatially-coupled (or convolutional-like) versions such as staircase codes [Smith et al., 2012] and braided codes [Jian et al., 2013]
- However, asymptotic analysis is typically based on density evolution using an ensemble argument ([Jian et al., 2012] and [Zhang et al., 2015])
- Exception: asymptotic analysis of product codes in [Schwartz et al., 2005], [Justesen and Høholdt, 2007]

Motivation

- Error-correcting codes for fiber-optical communications: Generalized product codes with iterative bounded-distance decoding are appealing due to syndrome compression at high code rates (low complexity)
- Code proposals are often very structured (i.e., deterministic):
- Conventional product codes [Justesen et al., 2010],
- Spatially-coupled (or convolutional-like) versions such as staircase codes [Smith et al., 2012] and braided codes [Jian et al., 2013]
- However, asymptotic analysis is typically based on density evolution using an ensemble argument ([Jian et al., 2012] and [Zhang et al., 2015])
- Exception: asymptotic analysis of product codes in [Schwartz et al., 2005], [Justesen and Høholdt, 2007]

In This Talk ...

- Deterministic code construction that recovers product codes, staircase codes, and block-wise braided codes as special cases
- Rigorous density evolution analysis possible over the binary erasure channel
- Application: Spatially-coupled product codes and symmetric generalized product codes

Introduction: Product Codes and Staircase Codes

Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

each row/column is a codeword in some component code

Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

each row/column is a codeword in some component code

Tanner
graph

Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

each row/column is a codeword in
some component code

Tanner
graph

constraint node (CN) degree $=$ component code length

Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

Tanner graph

constraint node (CN) degree $=$ component code length

Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

Tanner graph


```
edge = degree-2 variable node (VN)
```

constraint node (CN) degree $=$ component code length

Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

Tanner graph

Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

positions: 1

Tanner
graph

staircase array [Smith et al., 2012]

$\underset{5}{\text { ■ }} \cdots$

Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]
staircase array [Smith et al., 2012]

Tanner graph

positions: 1
2

$\underset{5}{\text { ■ }} \ldots$

Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]
staircase array [Smith et al., 2012]

Tanner graph

positions: 1
2

Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]
staircase array [Smith et al., 2012]

Tanner
graph

Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

Tanner graph
staircase array [Smith et al., 2012]

- Deterministic codes with fixed and structured Tanner graph

Introduction: Product Codes and Staircase Codes

rectangular array [Elias, 1954]

staircase array [Smith et al., 2012]

Tanner graph

- Deterministic codes with fixed and structured Tanner graph
- Our code construction recovers these (and other) codes as special cases

Deterministic Construction for Generalized Product Codes

Deterministic Construction for Generalized Product Codes

- $\boldsymbol{\eta}$: binary symmetric $L \times L$ matrix (defines Tanner graph connectivity)

Example: $\boldsymbol{\eta}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$

Deterministic Construction for Generalized Product Codes

- $\boldsymbol{\eta}$: binary symmetric $L \times L$ matrix (defines Tanner graph connectivity)
- L : number of positions (i.e., CN classes)

Example: $\boldsymbol{\eta}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), L=2$

Deterministic Construction for Generalized Product Codes

- $\boldsymbol{\eta}$: binary symmetric $L \times L$ matrix (defines Tanner graph connectivity)
- L : number of positions (i.e., CN classes)
- n : "problem size", proportional to the total number of CNs

Example: $\boldsymbol{\eta}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), L=2$

$$
n=4
$$

Deterministic Construction for Generalized Product Codes

- $\boldsymbol{\eta}$: binary symmetric $L \times L$ matrix (defines Tanner graph connectivity)
- L : number of positions (i.e., CN classes)
- n : "problem size", proportional to the total number of CNs
- $d \triangleq \gamma n$: block size per spatial position, where γ is some scaling parameter

Example: $\boldsymbol{\eta}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), L=2$

$$
n=4
$$

Deterministic Construction for Generalized Product Codes

- $\boldsymbol{\eta}$: binary symmetric $L \times L$ matrix (defines Tanner graph connectivity)
- L : number of positions (i.e., CN classes)
- n : "problem size", proportional to the total number of CNs
- $d \triangleq \gamma n$: block size per spatial position, where γ is some scaling parameter

Example: $\boldsymbol{\eta}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), L=2$, and $\gamma=1$

$$
n=4
$$

Deterministic Construction for Generalized Product Codes

- $\boldsymbol{\eta}$: binary symmetric $L \times L$ matrix (defines Tanner graph connectivity)
- L : number of positions (i.e., CN classes)
- n : "problem size", proportional to the total number of CNs
- $d \triangleq \gamma n$: block size per spatial position, where γ is some scaling parameter

Example: $\boldsymbol{\eta}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), L=2$, and $\gamma=1$

$$
n=4 \Longrightarrow d=4
$$

Deterministic Construction for Generalized Product Codes

- $\boldsymbol{\eta}$: binary symmetric $L \times L$ matrix (defines Tanner graph connectivity)
- L : number of positions (i.e., CN classes)
- n : "problem size", proportional to the total number of CNs
- $d \triangleq \gamma n$: block size per spatial position, where γ is some scaling parameter

Code Construction for $\mathcal{C}_{n}(\boldsymbol{\eta})$
Place d CNs at each position

Example: $\boldsymbol{\eta}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), L=2$, and $\gamma=1$

$$
n=4 \Longrightarrow d=4
$$

Deterministic Construction for Generalized Product Codes

- $\boldsymbol{\eta}$: binary symmetric $L \times L$ matrix (defines Tanner graph connectivity)
- L : number of positions (i.e., CN classes)
- n : "problem size", proportional to the total number of CNs
- $d \triangleq \gamma n$: block size per spatial position, where γ is some scaling parameter

Code Construction for $\mathcal{C}_{n}(\boldsymbol{\eta})$
Place d CNs at each position

Example: $\boldsymbol{\eta}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), L=2$, and $\gamma=1$
positions: $1 \quad 2 \quad n=4 \Longrightarrow d=4$

Deterministic Construction for Generalized Product Codes

- $\boldsymbol{\eta}$: binary symmetric $L \times L$ matrix (defines Tanner graph connectivity)
- L : number of positions (i.e., CN classes)
- n : "problem size", proportional to the total number of CNs
- $d \triangleq \gamma n$: block size per spatial position, where γ is some scaling parameter

Code Construction for $\mathcal{C}_{n}(\boldsymbol{\eta})$
Place d CNs at each position

Example: $\boldsymbol{\eta}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), L=2$, and $\gamma=1$
positions: $1 \quad 2 \quad n=4 \Longrightarrow d=4$
$\begin{array}{ll}\square \\ \square & \square \\ \square & \square \\ \square & \square\end{array}$

Deterministic Construction for Generalized Product Codes

- $\boldsymbol{\eta}$: binary symmetric $L \times L$ matrix (defines Tanner graph connectivity)
- L : number of positions (i.e., CN classes)
- n : "problem size", proportional to the total number of CNs
- $d \triangleq \gamma n$: block size per spatial position, where γ is some scaling parameter

Code Construction for $\mathcal{C}_{n}(\boldsymbol{\eta})$

Place d CNs at each position and connect each CN at position i to each CN at position j (through a VN) iff $\eta_{i, j}=1$.

Example: $\boldsymbol{\eta}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), L=2$, and $\gamma=1$
positions: $1 \quad 2 \quad n=4 \Longrightarrow d=4$

Deterministic Construction for Generalized Product Codes

- $\boldsymbol{\eta}$: binary symmetric $L \times L$ matrix (defines Tanner graph connectivity)
- L : number of positions (i.e., CN classes)
- n : "problem size", proportional to the total number of CNs
- $d \triangleq \gamma n$: block size per spatial position, where γ is some scaling parameter

Code Construction for $\mathcal{C}_{n}(\boldsymbol{\eta})$

Place d CNs at each position and connect each CN at position i to each CN at position j (through a VN) iff $\eta_{i, j}=1$.

Example: $\boldsymbol{\eta}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), L=2$, and $\gamma=1$

$$
\text { positions: } 1 \quad 2 \quad n=4 \Longrightarrow d=4
$$

Deterministic Construction for Generalized Product Codes

- $\boldsymbol{\eta}$: binary symmetric $L \times L$ matrix (defines Tanner graph connectivity)
- L : number of positions (i.e., CN classes)
- n : "problem size", proportional to the total number of CNs
- $d \triangleq \gamma n$: block size per spatial position, where γ is some scaling parameter

Code Construction for $\mathcal{C}_{n}(\boldsymbol{\eta})$

Place d CNs at each position and connect each CN at position i to each CN at position j (through a VN) iff $\eta_{i, j}=1$.

Example: $\boldsymbol{\eta}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), L=2$, and $\gamma=1$ gives a product code with $n \times n$ array. positions: 1

Deterministic Construction for Generalized Product Codes

- $\boldsymbol{\eta}$: binary symmetric $L \times L$ matrix (defines Tanner graph connectivity)
- L : number of positions (i.e., CN classes)
- n : "problem size", proportional to the total number of CNs
- $d \triangleq \gamma n$: block size per spatial position, where γ is some scaling parameter

Code Construction for $\mathcal{C}_{n}(\boldsymbol{\eta})$

Place d CNs at each position and connect each CN at position i to each CN at position j (through a VN) iff $\eta_{i, j}=1$.

Example: $\boldsymbol{\eta}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), L=2$, and $\gamma=1$ gives a product code with $n \times n$ array. positions: 1

Deterministic Construction for Generalized Product Codes

- $\boldsymbol{\eta}$: binary symmetric $L \times L$ matrix (defines Tanner graph connectivity)
- L : number of positions (i.e., CN classes)
- n : "problem size", proportional to the total number of CNs
- $d \triangleq \gamma n$: block size per spatial position, where γ is some scaling parameter

Code Construction for $\mathcal{C}_{n}(\boldsymbol{\eta})$

Place d CNs at each position and connect each CN at position i to each CN at position j (through a VN) iff $\eta_{i, j}=1$.

Example: $\boldsymbol{\eta}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), L=2$, and $\gamma=1$ gives a product code with $n \times n$ array. positions: 1

Deterministic Construction for Generalized Product Codes

- $\boldsymbol{\eta}$: binary symmetric $L \times L$ matrix (defines Tanner graph connectivity)
- L : number of positions (i.e., CN classes)
- n : "problem size", proportional to the total number of CNs
- $d \triangleq \gamma n$: block size per spatial position, where γ is some scaling parameter

Code Construction for $\mathcal{C}_{n}(\boldsymbol{\eta})$

Place d CNs at each position and connect each CN at position i to each CN at position j (through a VN) iff $\eta_{i, j}=1$.

Example: $\boldsymbol{\eta}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), L=2$, and $\gamma=1$ gives a product code with $n \times n$ array. positions: 1
$2 \quad n=7 \Longrightarrow d=7$

Channel Model and Decoding

Channel Model and Decoding

- Each CN corresponds to t-erasure correcting component code

Channel Model and Decoding

0	1	0	1	0	1	0
0	1	0	1	1	0	1
0	1	0	1	0	1	0
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	0	0	1	1	1
0	1	0	0	0	1	1

- Each CN corresponds to t-erasure correcting component code

Channel Model and Decoding

0	1	0	1	0	1	0
0	1	0	1	1	0	1
0	1	0	1	0	1	0
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	0	0	1	1	1
0	1	0	0	0	1	1

- Each CN corresponds to t-erasure correcting component code
- Codeword transmission over binary erasure channel with erasure probability p

Channel Model and Decoding

0	$?$	0	$?$	0	1	$?$
$?$	1	0	1	1	0	1
0	1	0	$?$	0	$?$	$?$
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	$?$	$?$	1	1	$?$
0	1	0	$?$	0	1	1

- Each CN corresponds to t-erasure correcting component code
- Codeword transmission over binary erasure channel with erasure probability p

Channel Model and Decoding

0	$?$	0	$?$	0	1	$?$
$?$	1	0	1	1	0	1
0	1	0	$?$	0	$?$	$?$
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	$?$	$?$	1	1	$?$
0	1	0	$?$	0	1	1

- Each CN corresponds to t-erasure correcting component code
- Codeword transmission over binary erasure channel with erasure probability p
- ℓ iterations of bounded-distance decoding for all CNs:
- If weight of an erasure pattern is $\leq t$, correct the pattern
- If weight is $>t$, declare "failure" and do nothing (in that iteration)

Channel Model and Decoding

0	$?$	0	$?$	0	1	$?$
$?$	1	0	1	1	0	1
0	1	0	$?$	0	$?$	$?$
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	$?$	$?$	1	1	$?$
0	1	0	$?$	0	1	1

- Each CN corresponds to t-erasure correcting component code
- Codeword transmission over binary erasure channel with erasure probability p
- ℓ iterations of bounded-distance decoding for all CNs:
- If weight of an erasure pattern is $\leq t$, correct the pattern
- If weight is $>t$, declare "failure" and do nothing (in that iteration)
- Residual graph: remove known variable nodes (i.e., edges)

Channel Model and Decoding

0	$?$	0	$?$	0	1	$?$
$?$	1	0	1	1	0	1
0	1	0	$?$	0	$?$	$?$
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	$?$	$?$	1	1	$?$
0	1	0	$?$	0	1	1

- Each CN corresponds to t-erasure correcting component code
- Codeword transmission over binary erasure channel with erasure probability p
- ℓ iterations of bounded-distance decoding for all CNs:
- If weight of an erasure pattern is $\leq t$, correct the pattern
- If weight is $>t$, declare "failure" and do nothing (in that iteration)
- Residual graph: remove known variable nodes (i.e., edges)

Channel Model and Decoding

0	$?$	0	$?$	0	1	$?$
$?$	1	0	1	1	0	1
0	1	0	$?$	0	$?$	$?$
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	$?$	$?$	1	1	$?$
0	1	0	$?$	0	1	1

- Each CN corresponds to t-erasure correcting component code
- Codeword transmission over binary erasure channel with erasure probability p
- ℓ iterations of bounded-distance decoding for all CNs:
- If weight of an erasure pattern is $\leq t$, correct the pattern
- If weight is $>t$, declare "failure" and do nothing (in that iteration)
- Residual graph: remove known variable nodes (i.e., edges)

Channel Model and Decoding

0	$?$	0	$?$	0	1	$?$
$?$	1	0	1	1	0	1
0	1	0	$?$	0	$?$	$?$
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	$?$	$?$	1	1	$?$
0	1	0	$?$	0	1	1

- Each CN corresponds to t-erasure correcting component code
- Codeword transmission over binary erasure channel with erasure probability p
- ℓ iterations of bounded-distance decoding for all CNs:
- If weight of an erasure pattern is $\leq t$, correct the pattern
- If weight is $>t$, declare "failure" and do nothing (in that iteration)
- Residual graph: remove known variable nodes (i.e., edges)
- Peeling of vertices with degree $\leq t$ (in parallel)

Channel Model and Decoding

1st iteration $(t=2)$

- Each CN corresponds to t-erasure correcting component code
- Codeword transmission over binary erasure channel with erasure probability p
- ℓ iterations of bounded-distance decoding for all CNs:
- If weight of an erasure pattern is $\leq t$, correct the pattern
- If weight is $>t$, declare "failure" and do nothing (in that iteration)
- Residual graph: remove known variable nodes (i.e., edges)
- Peeling of vertices with degree $\leq t$ (in parallel)

Channel Model and Decoding

1st iteration $(t=2)$

- Each CN corresponds to t-erasure correcting component code
- Codeword transmission over binary erasure channel with erasure probability p
- ℓ iterations of bounded-distance decoding for all CNs:
- If weight of an erasure pattern is $\leq t$, correct the pattern
- If weight is $>t$, declare "failure" and do nothing (in that iteration)
- Residual graph: remove known variable nodes (i.e., edges)
- Peeling of vertices with degree $\leq t$ (in parallel)

Channel Model and Decoding

2nd iteration $(t=2)$

0	1	0	$?$	0	1	$?$
0	1	0	1	1	0	1
0	1	0	$?$	0	1	$?$
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	0	$?$	1	1	$?$
0	1	0	0	0	1	1

- Each CN corresponds to t-erasure correcting component code
- Codeword transmission over binary erasure channel with erasure probability p
- ℓ iterations of bounded-distance decoding for all CNs:
- If weight of an erasure pattern is $\leq t$, correct the pattern
- If weight is $>t$, declare "failure" and do nothing (in that iteration)
- Residual graph: remove known variable nodes (i.e., edges)
- Peeling of vertices with degree $\leq t$ (in parallel)

Channel Model and Decoding

2nd iteration $(t=2)$

decodable	■ decodable
decodable ■	■ decodable
decodable	■ decodable
failure	■ decodable
decodable	■ decodable
decodable	■ decodable
failure	■ decodable

0	1	0	1	0	1	0
0	1	0	1	1	0	1
0	1	0	1	0	1	0
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	0	0	1	1	1
0	1	0	0	0	1	1

- Each CN corresponds to t-erasure correcting component code
- Codeword transmission over binary erasure channel with erasure probability p
- ℓ iterations of bounded-distance decoding for all CNs:
- If weight of an erasure pattern is $\leq t$, correct the pattern
- If weight is $>t$, declare "failure" and do nothing (in that iteration)
- Residual graph: remove known variable nodes (i.e., edges)
- Peeling of vertices with degree $\leq t$ (in parallel)

Density Evolution

Density Evolution

- What happens asymptotically for $n \rightarrow \infty$?

Density Evolution

- What happens asymptotically for $n \rightarrow \infty$?
- Let $p=c / n$ for $c>0$, where c is the effective channel quality

Density Evolution

- What happens asymptotically for $n \rightarrow \infty$?
- Let $p=c / n$ for $c>0$, where c is the effective channel quality

Density Evolution

- What happens asymptotically for $n \rightarrow \infty$?
- Let $p=c / n$ for $c>0$, where c is the effective channel quality

Density Evolution

- What happens asymptotically for $n \rightarrow \infty$?
- Let $p=c / n$ for $c>0$, where c is the effective channel quality

$$
\boldsymbol{x}^{(\ell)}=\boldsymbol{\Psi}_{\geq t}\left(c \boldsymbol{B} \boldsymbol{x}^{(\ell-1)}\right)
$$

Density Evolution

- What happens asymptotically for $n \rightarrow \infty$?
- Let $p=c / n$ for $c>0$, where c is the effective channel quality

Density Evolution

- What happens asymptotically for $n \rightarrow \infty$?
- Let $p=c / n$ for $c>0$, where c is the effective channel quality

Density Evolution

- What happens asymptotically for $n \rightarrow \infty$?
- Let $p=c / n$ for $c>0$, where c is the effective channel quality

Density Evolution

- What happens asymptotically for $n \rightarrow \infty$?
- Let $p=c / n$ for $c>0$, where c is the effective channel quality

Density Evolution

- What happens asymptotically for $n \rightarrow \infty$?
- Let $p=c / n$ for $c>0$, where c is the effective channel quality

Density Evolution

- What happens asymptotically for $n \rightarrow \infty$?
- Let $p=c / n$ for $c>0$, where c is the effective channel quality

Density Evolution

- What happens asymptotically for $n \rightarrow \infty$?
- Let $p=c / n$ for $c>0$, where c is the effective channel quality

Spatially-Coupled Product Codes

Spatially-Coupled Product Codes

Deterministic

Spatially-Coupled Product Codes

Deterministic

Spatially-Coupled Product Codes

Deterministic

Ensemble-Based [Jian et al., 2012]

Spatially-Coupled Product Codes

Deterministic

Ensemble-Based [Jian et al., 2012]

capacity-achieving at high rates over the binary symmetric channel

Spatially-Coupled Product Codes

Deterministic

Ensemble-Based [Jian et al., 2012]

Spatially-Coupled Product Codes

Deterministic

$\boldsymbol{x}^{(\ell)}=\boldsymbol{\Psi}_{\geq t}\left(c \boldsymbol{B} \boldsymbol{x}^{(\ell-1)}\right)$

Ensemble-Based [Jian et al., 2012]

Spatially-Coupled Product Codes

Deterministic

$$
\begin{aligned}
\boldsymbol{x}^{(\ell)}= & \boldsymbol{\Psi}_{\geq t}\left(c \boldsymbol{B} \boldsymbol{x}^{(\ell-1)}\right) \\
& (\boldsymbol{B}=\gamma \boldsymbol{\eta})
\end{aligned}
$$

Ensemble-Based [Jian et al., 2012]

$$
\boldsymbol{x}^{(\ell)}=\boldsymbol{\Psi}_{\geq t}\left(c \tilde{\boldsymbol{B}} \boldsymbol{x}^{(\ell-1)}\right)
$$

$$
\left(\tilde{B}=A^{\top} \boldsymbol{A}\right)
$$

$$
\boldsymbol{A}=\frac{1}{w}\left(\begin{array}{ccccccc}
1 & 1 & \cdots & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & \cdots & 1 & 0 & 0 \\
0 & 0 & \ddots & \ddots & \ddots & \ddots & 0 \\
0 & 0 & 1 & 1 & \cdots & 1
\end{array}\right)
$$

Spatially-Coupled Product Codes

Deterministic

$$
\begin{aligned}
\boldsymbol{x}^{(\ell)}= & \boldsymbol{\Psi}_{\geq t}\left(c \boldsymbol{B} \boldsymbol{x}^{(\ell-1)}\right) \\
& (\boldsymbol{B}=\gamma \boldsymbol{\eta})
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{2}\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right), \frac{1}{3}\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right), \\
& \text { staircase } \quad \text { braided (simplified) }
\end{aligned}
$$

Ensemble-Based [Jian et al., 2012]

$$
\begin{aligned}
\boldsymbol{x}^{(\ell)}= & \boldsymbol{\Psi}_{\geq t}\left(c \tilde{\boldsymbol{B}} \boldsymbol{x}^{(\ell-1)}\right) \\
& \left(\tilde{\boldsymbol{B}}=\boldsymbol{A}^{\top} \boldsymbol{A}\right)
\end{aligned}
$$

Spatially-Coupled Product Codes

Deterministic

$$
\begin{aligned}
\boldsymbol{x}^{(\ell)}= & \boldsymbol{\Psi}_{\geq t}\left(c \boldsymbol{B} \boldsymbol{x}^{(\ell-1)}\right) \\
& (\boldsymbol{B}=\gamma \boldsymbol{\eta})
\end{aligned}
$$

Ensemble-Based [Jian et al., 2012]

$$
\begin{aligned}
\boldsymbol{x}^{(\ell)}= & \boldsymbol{\Psi}_{\geq t}\left(c \tilde{\boldsymbol{B}} \boldsymbol{x}^{(\ell-1)}\right) \\
& \left(\tilde{\boldsymbol{B}}=\boldsymbol{A}^{\top} \boldsymbol{A}\right)
\end{aligned}
$$

- Equations have the same form, but different averaging matrices B and \tilde{B}

Spatially-Coupled Product Codes

Deterministic

$$
\begin{aligned}
\boldsymbol{x}^{(\ell)}= & \boldsymbol{\Psi}_{\geq t}\left(c \boldsymbol{B} \boldsymbol{x}^{(\ell-1)}\right) \\
& (\boldsymbol{B}=\gamma \boldsymbol{\eta})
\end{aligned}
$$

$$
\frac{\frac{1}{2}}{\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)} ., \frac{1}{3}\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
& \text { staircase } & \text { braided (simplified) }
\end{array}\right.
$$

Ensemble-Based [Jian et al., 2012]

$$
\boldsymbol{x}^{(\ell)}=\boldsymbol{\Psi}_{\geq t}\left(c \tilde{\boldsymbol{B}} \boldsymbol{x}^{(\ell-1)}\right)
$$

$$
\left(\tilde{B}=A^{\top} A\right)
$$

$$
\begin{gathered}
\frac{1}{4}\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right), \frac{1}{9}\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 2 & 2 & 1 & 0 & 0 \\
1 & 2 & 3 & 2 & 1 & 0 \\
0 & 1 & 2 & 3 & 2 & 1 \\
0 & 0 & 1 & 2 & 2 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right) \\
w=2=3
\end{gathered}
$$

- Equations have the same form, but different averaging matrices B and \tilde{B}
- One can show that ensemble performance can be "emulated"

Spatially-Coupled Product Codes

Deterministic

$$
\begin{aligned}
\boldsymbol{x}^{(\ell)}= & \boldsymbol{\Psi}_{\geq t}\left(c \boldsymbol{B} \boldsymbol{x}^{(\ell-1)}\right) \\
& (\boldsymbol{B}=\gamma \boldsymbol{\eta})
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{2}\left(\begin{array}{llllll}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) & , \frac{1}{3}\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right), \\
\text { staircase } & \text { braided (simplified) }
\end{aligned}
$$

Ensemble-Based [Jian et al., 2012]

$$
\boldsymbol{x}^{(\ell)}=\boldsymbol{\Psi}_{\geq t}\left(c \tilde{\boldsymbol{B}} \boldsymbol{x}^{(\ell-1)}\right)
$$

$$
\left(\tilde{B}=A^{\top} A\right)
$$

$$
\begin{gathered}
\frac{1}{4}\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right), \frac{1}{9}\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 2 & 2 & 1 & 0 & 0 \\
1 & 2 & 3 & 2 & 1 & 0 \\
0 & 1 & 2 & 3 & 2 & 1 \\
0 & 0 & 1 & 2 & 2 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right) \\
w=2=3
\end{gathered}
$$

- Equations have the same form, but different averaging matrices B and \tilde{B}
- One can show that ensemble performance can be "emulated"
- \Longrightarrow ensemble threshold bounds in [Jian et al., 2012] apply to deterministic codes!

Symmetric Generalized Product Codes

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

$$
\begin{array}{ll}
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\text { oduct code } & \left(\begin{array}{cccccc}
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right) \\
\text { staircase code }
\end{array}
$$

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$

$$
n=5 \Longrightarrow d=5
$$

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$

$$
n=5 \Longrightarrow d=5
$$

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$

$$
n=5 \Longrightarrow d=5
$$

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$

$$
n=5 \Longrightarrow d=5
$$

array representation?

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$
$n=5 \Longrightarrow d=5$

0	$*$	$*$	$*$	$*$
c_{1}	0	$*$	$*$	$*$
c_{2}	c_{3}	0	$*$	$*$
c_{4}	c_{5}	c_{6}	0	$*$
c_{7}	c_{8}	c_{9}	c_{10}	0

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$

0	$*$	$*$	$*$	$*$
c_{1}	0	$*$	$*$	$*$
c_{2}	c_{3}	0	$*$	$*$
c_{4}	c_{5}	c_{6}	0	$*$
c_{7}	c_{8}	c_{9}	c_{10}	0

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$
$n=5 \Longrightarrow d=5$

0	$*$	$*$	$*$	$*$
c_{1}	0	$*$	$*$	$*$
c_{2}	c_{3}	0	$*$	$*$
c_{4}	c_{5}	c_{6}	0	$*$
c_{7}	c_{8}	c_{9}	c_{10}	0

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$

0	$*$	$*$	$*$	$*$
c_{1}	0	$*$	$*$	$*$
c_{2}	c_{3}	0	$*$	$*$
c_{4}	c_{5}	c_{6}	0	$*$
c_{7}	c_{8}	c_{9}	c_{10}	0

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$
$n=5 \Longrightarrow d=5$

0	$*$	$*$	$*$	$*$
c_{1}	0	$*$	$*$	$*$
c_{2}	c_{3}	0	$*$	$*$
c_{4}	c_{5}	c_{6}	0	$*$
c_{7}	c_{8}	c_{9}	c_{10}	0

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$

0	$*$	$*$	$*$	$*$
c_{1}	0	$*$	$*$	$*$
c_{2}	c_{3}	0	$*$	$*$
c_{4}	c_{5}	c_{6}	0	$*$
c_{7}	c_{8}	c_{9}	c_{10}	0

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$

0	$*$	$*$	$*$	$*$
c_{1}	0	$*$	$*$	$*$
c_{2}	c_{3}	0	$*$	$*$
c_{4}	c_{5}	c_{6}	0	$*$
c_{7}	c_{8}	c_{9}	c_{10}	0

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$

0	$*$	$*$	$*$	$*$
c_{1}	0	$*$	$*$	$*$
c_{2}	c_{3}	0	$*$	$*$
c_{4}	c_{5}	c_{6}	0	$*$
c_{7}	c_{8}	c_{9}	c_{10}	0

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$
$n=5 \Longrightarrow d=5$

0	c_{1}	c_{2}	c_{4}	c_{7}
c_{1}	0	c_{3}	c_{5}	c_{8}
c_{2}	c_{3}	0	c_{6}	c_{9}
c_{4}	c_{5}	c_{6}	0	c_{10}
c_{7}	c_{8}	c_{9}	c_{10}	0

symmetric array

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$

0	c_{1}	c_{2}	c_{4}	c_{7}
c_{1}	0	c_{3}	c_{5}	c_{8}
c_{2}	c_{3}	0	c_{6}	c_{9}
c_{4}	c_{5}	c_{6}	0	c_{10}
c_{7}	c_{8}	c_{9}	c_{10}	0

symmetric array

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$

0	c_{1}	c_{2}	c_{4}	c_{7}
c_{1}	0	c_{3}	c_{5}	c_{8}
c_{2}	c_{3}	0	c_{6}	c_{9}
c_{4}	c_{5}	c_{6}	0	c_{10}
c_{7}	c_{8}	c_{9}	c_{10}	0

symmetric array

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$

0	c_{1}	c_{2}	c_{4}	c_{7}
c_{1}	0	c_{3}	c_{5}	c_{8}
c_{2}	c_{3}	0	c_{6}	c_{9}
c_{4}	c_{5}	c_{6}	0	c_{10}
c_{7}	c_{8}	c_{9}	c_{10}	0

symmetric array

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$

0	c_{1}	c_{2}	c_{4}	c_{7}
c_{1}	0	c_{3}	c_{5}	c_{8}
c_{2}	c_{3}	0	c_{6}	c_{9}
c_{4}	c_{5}	c_{6}	0	c_{10}
c_{7}	c_{8}	c_{9}	c_{10}	0

symmetric array

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$

0	c_{1}	c_{2}	c_{4}	c_{7}
c_{1}	0	c_{3}	c_{5}	c_{8}
c_{2}	c_{3}	0	c_{6}	c_{9}
c_{4}	c_{5}	c_{6}	0	c_{10}
c_{7}	c_{8}	c_{9}	c_{10}	0

symmetric array

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$
$n=5 \Longrightarrow d=5$

0	c_{1}	c_{2}	c_{4}	c_{7}
c_{1}	0	c_{3}	c_{5}	c_{8}
c_{2}	c_{3}	0	c_{6}	c_{9}
c_{4}	c_{5}	c_{6}	0	c_{10}
c_{7}	c_{8}	c_{9}	c_{10}	0

symmetric array

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$ gives a half-product code [Justesen, 2011]
$n=5 \Longrightarrow d=5$

0	c_{1}	c_{2}	c_{4}	c_{7}
c_{1}	0	c_{3}	c_{5}	c_{8}
c_{2}	c_{3}	0	c_{6}	c_{9}
c_{4}	c_{5}	c_{6}	0	c_{10}
c_{7}	c_{8}	c_{9}	c_{10}	0

symmetric array

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$ gives a half-product code [Justesen, 2011]
$n=5 \Longrightarrow d=5$

Graph appears already in
[Tanner, 1981]

0	c_{1}	c_{2}	c_{4}	c_{7}
c_{1}	0	c_{3}	c_{5}	c_{8}
c_{2}	c_{3}	0	c_{6}	c_{9}
c_{4}	c_{5}	c_{6}	0	c_{10}
c_{7}	c_{8}	c_{9}	c_{10}	0

symmetric array

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$ gives a half-product code [Justesen, 2011]
$n=5 \Longrightarrow d=5$

Graph appears already in
[Tanner, 1981]

0	c_{1}	c_{2}	c_{4}	c_{7}
c_{1}	0	c_{3}	c_{5}	c_{8}
c_{2}	c_{3}	0	c_{6}	c_{9}
c_{4}	c_{5}	c_{6}	0	c_{10}
c_{7}	c_{8}	c_{9}	c_{10}	0

symmetric array

- A half-product code has the same threshold as a product code, but less than half the block length

Symmetric Generalized Product Codes

- So far, $\eta_{i, i}=0$ for all $i \in\{1,2, \ldots, L\}$. What about $\eta_{i, i}=1$?

Example: $L=1, \boldsymbol{\eta}=1$, and $\gamma=1$ gives a half-product code [Justesen, 2011]
$n=5 \Longrightarrow d=5$

Graph appears already in
[Tanner, 1981]

0	c_{1}	c_{2}	c_{4}	c_{7}
c_{1}	0	c_{3}	c_{5}	c_{8}
c_{2}	c_{3}	0	c_{6}	c_{9}
c_{4}	c_{5}	c_{6}	0	c_{10}
c_{7}	c_{8}	c_{9}	c_{10}	0

symmetric array

- A half-product code has the same threshold as a product code, but less than half the block length
- Half-braided codes can outperform staircase and braided codes in the waterfall region, at a lower error floor and decoding delay [Häger et al., 2016]

Conclusions and Future Work

Conclusions and Future Work

- Density evolution can be applied to a large class of deterministic generalized product codes.

Conclusions and Future Work

- Density evolution can be applied to a large class of deterministic generalized product codes.
- There exists a family of (deterministic) codes that performs asymptotically equivalent to a previously studied spatially-coupled code ensemble.

Conclusions and Future Work

- Density evolution can be applied to a large class of deterministic generalized product codes.
- There exists a family of (deterministic) codes that performs asymptotically equivalent to a previously studied spatially-coupled code ensemble.
- Symmetric generalized product codes can outperform their nonsymmetric counterparts.

Conclusions and Future Work

- Density evolution can be applied to a large class of deterministic generalized product codes.
- There exists a family of (deterministic) codes that performs asymptotically equivalent to a previously studied spatially-coupled code ensemble.
- Symmetric generalized product codes can outperform their nonsymmetric counterparts.

Thank you!

FIBER-OPTIC COMMUNICATIONS
RESEARCH CENTER

References

Elias, P. (1954).
Error-free coding.
IRE Trans. Inf. Theory, 4(4):29-37.
Häger, C., Pfister, H. D., Graell i Amat, A., and Brännström, F. (2016).
Density evolution and error floor analysis of staircase and braided codes.
In Proc. Optical Fiber Communication Conf. (OFC), Anaheim, CA.

Jian, Y.-Y., Pfister, H. D., and Narayanan, K. R. (2012).
Approaching capacity at high rates with iterative hard-decision decoding.
In Proc. IEEE Int. Symp. Information Theory (ISIT), Cambridge, MA.

Jian, Y.-Y., Pfister, H. D., Narayanan, K. R., Rao, R., and Mazahreh, R. (2013).
Iterative hard-decision decoding of braided BCH codes for high-speed optical communication.
In Proc. IEEE Glob. Communication Conf. (GLOBECOM), Atlanta, GA.
Justesen, J. (2011).
Performance of product codes and related structures with iterated decoding.
IEEE Trans. Commun., 59(2):407-415.

Justesen, J. and Høholdt, T. (2007).
Analysis of iterated hard decision decoding of product codes with Reed-Solomon component codes.
In Proc. IEEE Information Theory Workshop (ITW), Tahoe City, CA.
Justesen, J., Larsen, K. J., and Pedersen, L. A. (2010).
Error correcting coding for OTN.
IEEE Commun. Mag., 59(9):70-75.

