Density Evolution for Deterministic Generalized Product Codes with Higher-Order Modulation

 $\begin{array}{lll} \mbox{Christian H\"ager}^1 & \mbox{Alexandre Graell i Amat}^2 \\ \mbox{Henry D. Pfister}^1 & \mbox{Fredrik Br\"annstr\"om}^2 \end{array}$

¹Department of Electrical and Computer Engineering, Duke University, Durham

 $^2\mathsf{Department}$ of Signals and Systems, Chalmers University of Technology, Gothenburg

International Symposium on Turbo Codes & Iterative Information Processing Brest, France, September 6, 2016

FIBER-OPTIC COMMUNICATIONS RESEARCH CENTER

CHALMERS

	Introduction 000
--	---------------------

Introduction 000	Code Construction	Density Evolution 000	Application 000	Conclusion O	CHALMERS
---------------------	-------------------	--------------------------	--------------------	-----------------	----------

• Error-correcting codes for high-speed fiber-optical communications: Generalized product codes with iterative bounded-distance decoding are very appealing (low complexity)

Introduction	Code Construction	Density Evolution	Application	Conclusion	CHALMERS
000	00	000	000	O	
000	00	000	000	0	CHALMERS

- Error-correcting codes for high-speed fiber-optical communications: Generalized product codes with iterative bounded-distance decoding are very appealing (low complexity)
- Code proposals are often very structured (i.e., deterministic):
 - Conventional product codes [Justesen et al., 2010],
 - Spatially-coupled (or convolutional-like) versions such as staircase codes [Smith et al., 2012] and braided codes [Jian, 2013]

Introduction 000	Code Construction	Density Evolution	Application 000	Conclusion O	CHALMERS

- Error-correcting codes for high-speed fiber-optical communications: Generalized product codes with iterative bounded-distance decoding are very appealing (low complexity)
- Code proposals are often very structured (i.e., deterministic):
 - Conventional product codes [Justesen et al., 2010],
 - Spatially-coupled (or convolutional-like) versions such as staircase codes [Smith et al., 2012] and braided codes [Jian, 2013]
- Asymptotic density evolution analysis possible for the binary erasure channel (BEC) without ensemble argument [Häger et al., 2015]

Introduction	Code Construction	Density Evolution	Application	Conclusion	CHALMERS
000	00	000	000	O	
000	00	000	000	0	CHALMERS

- Error-correcting codes for high-speed fiber-optical communications: Generalized product codes with iterative bounded-distance decoding are very appealing (low complexity)
- Code proposals are often very structured (i.e., deterministic):
 - Conventional product codes [Justesen et al., 2010],
 - Spatially-coupled (or convolutional-like) versions such as staircase codes [Smith et al., 2012] and braided codes [Jian, 2013]
- Asymptotic density evolution analysis possible for the binary erasure channel (BEC) without ensemble argument [Häger et al., 2015]
- Recent trend towards spectrally-efficient fiber-optical systems

Introduction	Code Construction	Density Evolution	Application	Conclusion	CHALMERS
000	00	000	000	O	
000	00	000	000	0	CHALMERS

- Error-correcting codes for high-speed fiber-optical communications: Generalized product codes with iterative bounded-distance decoding are very appealing (low complexity)
- Code proposals are often very structured (i.e., deterministic):
 - Conventional product codes [Justesen et al., 2010],
 - Spatially-coupled (or convolutional-like) versions such as staircase codes [Smith et al., 2012] and braided codes [Jian, 2013]
- Asymptotic density evolution analysis possible for the binary erasure channel (BEC) without ensemble argument [Häger et al., 2015]
- Recent trend towards spectrally-efficient fiber-optical systems

In This Talk ...

- Deterministic code construction that recovers product codes, staircase codes, and block-wise braided codes as special cases
- Rigorous density evolution analysis over parallel BECs
- Application: Bit mapper (interleaver) optimization for coded modulation

Introduction ●00		Application 000	CHAIMERS
			OTALMENS

Introduction			
000			CHALMERS

Introduction			
000			CHALMERS

Introduction			
000			CHALMERS

		ć.,

Introduction			
000			CHALMERS

Introduction			
000			CHALMERS

rectangular array [Elias, 1954]

each row/column is a codeword in some component code

rectangular array [Elias, 1954]

each row/column is a codeword in some component code

Tanner graph

constraint node (CN) degree = component code length

rectangular array [Elias, 1954]

Tanner graph

edge = degree-2 variable node (VN)

constraint node (CN) degree = component code length

rectangular array [Elias, 1954]

Tanner graph

constraint node (CN) degree = component code length

Introduction			
000			CHALMERS

rectangular array [Elias, 1954]

Introduction			
● 00			CHALMERS

rectangular array [Elias, 1954] staircase array [Smith et al., 2012]

. . .

Introduction			
● 00			CHALMERS

rectangular array [Elias, 1954] staircase array [Smith et al., 2012]

. . .

Introduction			
● 00			CHALMERS

rectangular array [Elias, 1954] staircase array [Smith et al., 2012]

. . .

Introduction		Application	
● 00			CHALMERS

rectangular array [Elias, 1954] staircase array [Smith et al., 2012]

. . .

Introduction			
000			CHALMERS

rectangular array [Elias, 1954] staircase array [Smith et al., 2012]

. . .

Introduction			
000			CHALMERS

rectangular array [Elias, 1954]

staircase array [Smith et al., 2012]

. . .

Introduction			
000			CHALMERS

rectangular array [Elias, 1954] staircase array [Smith et al., 2012]

Introduction			
000			CHALMERS

rectangular array [Elias, 1954] staircase array [Smith et al., 2012]

rectangular array [Elias, 1954]

staircase array [Smith et al., 2012]

graph

positions: 1 2 3 4
Deterministic codes with fixed and structured Tanner graph

. . .

5

Introduction		Application	
000			CHALMERS

_	 _	 _	_

Introduction			
000			CHALMERS

0	1	0	1	0	1	0
0	1	0	1	1	0	1
0	1	0	1	0	1	0
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	0	0	1	1	1
0	1	0	0	0	1	1

Introduction ○●○			Application 000		CHALMERS
	ltorati	va Paundad D	istance De	ading	

0	?	0	?	0	1	?
?	1	0	1	1	0	1
0	1	0	?	0	?	?
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	?	?	1	1	?
0	1	0	?	0	1	1

• Codeword transmission over the $\ensuremath{\mathsf{BEC}}$ with erasure probability p

Introduction 0●0		Density Evolution Application 000 000		CHALMERS
	1			

0	?	0	?	0	1	?
?	1	0	1	1	0	1
0	1	0	?	0	?	?
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	?	?	1	1	?
0	1	0	?	0	1	1

• Codeword transmission over the $\ensuremath{\mathsf{BEC}}$ with erasure probability p

Introduction		Application 000	CHALMERS

0	?	0	?	0	1	?
?	1	0	1	1	0	1
0	1	0	?	0	?	?
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	?	?	1	1	?
0	1	0	?	0	1	1

• Codeword transmission over the $\ensuremath{\mathsf{BEC}}$ with erasure probability p

Introduction ○●○		Application 000	CHALMERS

0	?	0	?	0	1	?
?	1	0	1	1	0	1
0	1	0	?	0	?	?
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	?	?	1	1	?
0	1	0	?	0	1	1

- Codeword transmission over the ${\sf BEC}$ with erasure probability p
- Each CN corresponds to *t*-erasure correcting component code

Introduction ○●○		Application 000	CHALMERS

0	?	0	?	0	1	?
?	1	0	1	1	0	1
0	1	0	?	0	?	?
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	?	?	1	1	?
0	1	0	?	0	1	1

- Codeword transmission over the $\ensuremath{\mathsf{BEC}}$ with erasure probability p
- Each CN corresponds to *t*-erasure correcting component code
- ℓ iterations of bounded-distance decoding = peeling of vertices with degree $\leq t$ (in parallel)

Introduction		Application	
000			CHALMERS
			<u> </u>

1st iteration (t = 2)

0	?	0	?	0	1	?
?	1	0	1	1	0	1
0	1	0	?	0	?	?
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	?	?	1	1	?
0	1	0	?	0	1	1

- Codeword transmission over the $\ensuremath{\mathsf{BEC}}$ with erasure probability p
- Each CN corresponds to *t*-erasure correcting component code
- ℓ iterations of bounded-distance decoding = peeling of vertices with degree $\leq t$ (in parallel)

Introduction			
000			CHALMERS

1st iteration (t = 2)

0	1	0	?	0	1	?
0	1	0	1	1	0	1
0	1	0	?	0	1	?
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	0	?	1	1	?
0	1	0	0	0	1	1

- Codeword transmission over the $\ensuremath{\mathsf{BEC}}$ with erasure probability p
- Each CN corresponds to *t*-erasure correcting component code
- ℓ iterations of bounded-distance decoding = peeling of vertices with degree $\leq t$ (in parallel)
| Introduction | | Application | |
|--------------|--|-------------|----------|
| 000 | | | CHALMERS |
| | | | |

Iterative Bounded-Distance Decoding

2nd iteration (t = 2)

0	1	0	?	0	1	?
0	1	0	1	1	0	1
0	1	0	?	0	1	?
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	0	?	1	1	?
0	1	0	0	0	1	1

- Codeword transmission over the $\ensuremath{\mathsf{BEC}}$ with erasure probability p
- Each CN corresponds to *t*-erasure correcting component code
- ℓ iterations of bounded-distance decoding = peeling of vertices with degree $\leq t$ (in parallel)

Introduction ○●○		Application 000	
			CITALINEI

Iterative Bounded-Distance Decoding

2nd iteration (t = 2)

0	1	0	1	0	1	0
0	1	0	1	1	0	1
0	1	0	1	0	1	0
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	0	0	1	1	1
0	1	0	0	0	1	1

- Codeword transmission over the $\ensuremath{\mathsf{BEC}}$ with erasure probability p
- Each CN corresponds to *t*-erasure correcting component code
- ℓ iterations of bounded-distance decoding = peeling of vertices with degree $\leq t$ (in parallel)

Introduction			
000			CHALMERS

Asymptotic Performance Prediction

Introduction 000	Code Construction	Density Evolution 000	Application 000	Conclusion O	CHALMERS			
	Asymptotic Performance Prediction							
	· · · · · · · · · · · · · · · · · · ·							

• Example: staircase code with a fixed component code

Introduction 000	Code Construction	Density Evolution 000	Application 000	Conclusion O	CHALMERS
	Asym	ptotic Perforn	nance Predi	iction	

- Example: staircase code with a fixed component code
- Use simulations to predict performance \rightarrow computationally intensive

Introduction 00●	Code Construction	Density Evolution 000	Application 000	Conclusion O	CHALMERS
	Asym	ptotic Perforn	nance Predi	iction	

- Example: staircase code with a fixed component code
- Use simulations to predict performance \rightarrow computationally intensive

Introduction ○○●	Code Construction OO	Density Evolution	Application 000	Conclusion O	CHALMERS
	Asym	ptotic Perforn	nance Predi	ction	

- Example: staircase code with a fixed component code
- Use simulations to predict performance \rightarrow computationally intensive
- Efficient asymptotic analysis possible via density evolution without ensemble argument [Häger et al., 2015]

Introduction 00●	Code Construction OO	Density Evolution	Application 000	Conclusion O	CHALMERS
	Asvm	ptotic Perforn	nance Predi	ction	

- Example: staircase code with a fixed component code
- Use simulations to predict performance \rightarrow computationally intensive
- Efficient asymptotic analysis possible via density evolution without ensemble argument [Häger et al., 2015]
- Analysis for transmission over the BEC where p=c/n for c>0 and $n\to\infty$

Introduction	Code Construction	Density Evolution	Application	Conclusion	CHALMERS
000	00	000	000	O	
	Asym	ptotic Perforn	nance Predi	ction	

- Example: staircase code with a fixed component code
- Use simulations to predict performance \rightarrow computationally intensive
- Efficient asymptotic analysis possible via density evolution without ensemble argument [Häger et al., 2015]
- Analysis for transmission over the BEC where p=c/n for c>0 and $n\to\infty$

4/13

Introduction 00●	Code Construction OO	Density Evolution	Application 000	Conclusion O	CHALMERS
	Asvm	ptotic Perforn	nance Predi	ction	

- Example: staircase code with a fixed component code
- Use simulations to predict performance \rightarrow computationally intensive
- Efficient asymptotic analysis possible via density evolution without ensemble argument [Häger et al., 2015]
- Analysis for transmission over the BEC where p=c/n for c>0 and $n\to\infty$

4/13

Introduction 000			Application 000		CHALMERS
	Acum	ntatic Darfarm	aanco Drodi	ation	

Asymptotic Performance Prediction

- Example: staircase code with a fixed component code
- Use simulations to predict performance \rightarrow computationally intensive
- Efficient asymptotic analysis possible via density evolution without ensemble argument [Häger et al., 2015]
- Analysis for transmission over the BEC where p=c/n for c>0 and $n\to\infty$

Main contribution

Generalization to parallel BECs with different erasure probabilities

Code Construction		
00		CHALMERS

product codes

staircase codes

Code Construction		
0		CHALMERS

product codes

staircase codes

 η : symmetric $L \times L$ matrix that defines graph connectivity

DE for Det. GPCs with Higher-Order Modulation

 $\eta = \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}
ight)$

 η : symmetric $L \times L$ matrix that defines graph connectivity

DE for Det. GPCs with Higher-Order Modulation

DE for Det. GPCs with Higher-Order Modulation

5/13

Code Construction		
•0		CHALMERS
		·····

product codes

staircase codes

Code Construction		
•0		CHALMERS
		·····

product codes

staircase codes

n: "problem size", proportional to the number of constraint nodes

Code Construction		
•0		CHALMERS
		·····

product codes

staircase codes

n: "problem size", proportional to the number of constraint nodes

5/13

increasing n

Code Construction		
•0		CHALMERS

product codes

staircase codes

n: "problem size", proportional to the number of constraint nodes

CHALMERS	Conclusion	Application	Density Evolution	Code Construction	Introduction
	O	000	000	O●	000

Code Construction		
00		CHALMERS
		·····

• For each position $i \in \{1, 2, ..., L\}$, let $\tau(i) = (\tau_1(i), \tau_2(i), ..., \tau_{t_{\max}}(i))^{\mathsf{T}}$ be a probability vector/distribution $(\sum_t \tau_t(i) = 1 \text{ and } \tau_t(i) \ge 0 \text{ for all } i)$

Code Construction	Application	
00		CHALMERS

- For each position $i \in \{1, 2, ..., L\}$, let $\tau(i) = (\tau_1(i), \tau_2(i), ..., \tau_{t_{max}}(i))^{\intercal}$ be a probability vector/distribution $(\sum_t \tau_t(i) = 1 \text{ and } \tau_t(i) \ge 0 \text{ for all } i)$
- $\tau_t(i)$: fraction of component codes at position *i* that correct *t* erasures

- For each position $i \in \{1, 2, ..., L\}$, let $\tau(i) = (\tau_1(i), \tau_2(i), ..., \tau_{t_{\max}}(i))^{\mathsf{T}}$ be a probability vector/distribution $(\sum_t \tau_t(i) = 1 \text{ and } \tau_t(i) \ge 0 \text{ for all } i)$
- $\tau_t(i)$: fraction of component codes at position *i* that correct *t* erasures

- For each position $i \in \{1, 2, ..., L\}$, let $\tau(i) = (\tau_1(i), \tau_2(i), ..., \tau_{t_{max}}(i))^{\mathsf{T}}$ be a probability vector/distribution $(\sum_t \tau_t(i) = 1 \text{ and } \tau_t(i) \ge 0 \text{ for all } i)$
- $\tau_t(i)$: fraction of component codes at position *i* that correct *t* erasures

- For each position $i \in \{1, 2, ..., L\}$, let $\tau(i) = (\tau_1(i), \tau_2(i), ..., \tau_{t_{max}}(i))^{\mathsf{T}}$ be a probability vector/distribution $(\sum_t \tau_t(i) = 1 \text{ and } \tau_t(i) \ge 0 \text{ for all } i)$
- $\tau_t(i)$: fraction of component codes at position *i* that correct *t* erasures

Code Construction	Application	
00		CHALMERS

- For each position $i \in \{1, 2, ..., L\}$, let $\tau(i) = (\tau_1(i), \tau_2(i), ..., \tau_{t_{max}}(i))^{\intercal}$ be a probability vector/distribution $(\sum_t \tau_t(i) = 1 \text{ and } \tau_t(i) \ge 0 \text{ for all } i)$
- $\tau_t(i)$: fraction of component codes at position *i* that correct *t* erasures

Code Construction		
00		CHALMERS

- For each position $i \in \{1, 2, ..., L\}$, let $\tau(i) = (\tau_1(i), \tau_2(i), ..., \tau_{t_{\max}}(i))^{\mathsf{T}}$ be a probability vector/distribution $(\sum_t \tau_t(i) = 1 \text{ and } \tau_t(i) \ge 0 \text{ for all } i)$
- $au_t(i)$: fraction of component codes at position i that correct t erasures
- Example: irregular product codes, where $\eta = \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}
 ight)$ (i.e., L=2) and
 - $\tau_{t_1}(1) = 0.2$, $\tau_{t_2}(1) = 0.3$, $\tau_{t_3}(1) = 0.5$
 - $\tau_{t_4}(2) = 0.3, \ \tau_{t_5}(2) = 0.7$

Code Construction		
00		CHALMERS

- For each position $i \in \{1, 2, ..., L\}$, let $\tau(i) = (\tau_1(i), \tau_2(i), ..., \tau_{t_{max}}(i))^{\intercal}$ be a probability vector/distribution $(\sum_t \tau_t(i) = 1 \text{ and } \tau_t(i) \ge 0 \text{ for all } i)$
- $au_t(i)$: fraction of component codes at position i that correct t erasures
- Example: irregular product codes, where $\eta = \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}
 ight)$ (i.e., L=2) and

•
$$\tau_{t_1}(1) = 0.2, \ \tau_{t_2}(1) = 0.3, \ \tau_{t_3}(1) = 0.5$$

•
$$\tau_{t_4}(2) = 0.3, \ \tau_{t_5}(2) = 0.7$$

Code Construction		
00		CHALMERS

- For each position $i \in \{1, 2, ..., L\}$, let $\tau(i) = (\tau_1(i), \tau_2(i), ..., \tau_{t_{\max}}(i))^{\mathsf{T}}$ be a probability vector/distribution $(\sum_t \tau_t(i) = 1 \text{ and } \tau_t(i) \ge 0 \text{ for all } i)$
- $au_t(i)$: fraction of component codes at position i that correct t erasures
- Example: irregular product codes, where $\eta = \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}
 ight)$ (i.e., L=2) and
 - $\tau_{t_1}(1) = 0.2$, $\tau_{t_2}(1) = 0.3$, $\tau_{t_3}(1) = 0.5$
 - $\tau_{t_4}(2) = 0.3, \ \tau_{t_5}(2) = 0.7$

- For each position $i \in \{1, 2, ..., L\}$, let $\tau(i) = (\tau_1(i), \tau_2(i), ..., \tau_{t_{\max}}(i))^{\mathsf{T}}$ be a probability vector/distribution $(\sum_t \tau_t(i) = 1 \text{ and } \tau_t(i) \ge 0 \text{ for all } i)$
- $au_t(i)$: fraction of component codes at position i that correct t erasures
- Example: irregular product codes, where $\eta = \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}
 ight)$ (i.e., L=2) and
 - $\tau_{t_1}(1) = 0.2$, $\tau_{t_2}(1) = 0.3$, $\tau_{t_3}(1) = 0.5$

•
$$\tau_{t_4}(2) = 0.3, \ \tau_{t_5}(2) = 0.7$$

- For each position $i \in \{1, 2, ..., L\}$, let $\tau(i) = (\tau_1(i), \tau_2(i), ..., \tau_{t_{max}}(i))^{\intercal}$ be a probability vector/distribution $(\sum_t \tau_t(i) = 1 \text{ and } \tau_t(i) \ge 0 \text{ for all } i)$
- $au_t(i)$: fraction of component codes at position i that correct t erasures
- Example: irregular product codes, where $\eta = \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}\right)$ (i.e., L=2) and

•
$$\tau_{t_1}(1) = 0.2, \ \tau_{t_2}(1) = 0.3, \ \tau_{t_3}(1) = 0.5$$

•
$$\tau_{t_4}(2) = 0.3, \ \tau_{t_5}(2) = 0.7$$

DE for Det. GPCs with Higher-Order Modulation

- For each position $i \in \{1, 2, ..., L\}$, let $\tau(i) = (\tau_1(i), \tau_2(i), ..., \tau_{t_{\max}}(i))^{\mathsf{T}}$ be a probability vector/distribution $(\sum_t \tau_t(i) = 1 \text{ and } \tau_t(i) \ge 0 \text{ for all } i)$
- $au_t(i)$: fraction of component codes at position i that correct t erasures
- Example: irregular product codes, where $\eta = \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}\right)$ (i.e., L=2) and

•
$$\tau_{t_1}(1) = 0.2, \ \tau_{t_2}(1) = 0.3, \ \tau_{t_3}(1) = 0.5$$

•
$$\tau_{t_4}(2) = 0.3, \ \tau_{t_5}(2) = 0.7$$

K = 6 distinct VN classes

	Density Evolution ●00	Application 000	CHALMERS

Bit Mapper

7/13
000	00	●00	000	0	CHALMERS
		Bit Ma	pper		
				$\begin{array}{c} \text{BEC } p_1 \\ \vdots \\ \text{BEC } p_M \end{array}$	

• Transmission over parallel BECs with erasure probabilities p_1, \ldots, p_M

- Transmission over parallel BECs with erasure probabilities p_1, \ldots, p_M
- Bit mapper A determines the allocation of coded bits to channels

- Transmission over parallel BECs with erasure probabilities p_1, \ldots, p_M
- Bit mapper A determines the allocation of coded bits to channels
- $A: K \times M$ matrix, where entries $a_{k,q}$ denote the fraction of bits from the k-th VN class that are allocated to the q-th BEC

- Transmission over parallel BECs with erasure probabilities p_1, \ldots, p_M
- Bit mapper A determines the allocation of coded bits to channels
- A: $K \times M$ matrix, where entries $a_{k,q}$ denote the fraction of bits from the k-th VN class that are allocated to the q-th BEC
- Effectively, coded bits from different VN classes are transmitted through "virtual" BECs with erasure probability \tilde{p}_k , where

$$\tilde{p}_k = \sum_{q=1}^M a_{k,q} p_q$$

- Transmission over parallel BECs with erasure probabilities p_1, \ldots, p_M
- Bit mapper A determines the allocation of coded bits to channels
- A: $K \times M$ matrix, where entries $a_{k,q}$ denote the fraction of bits from the k-th VN class that are allocated to the q-th BEC
- Effectively, coded bits from different VN classes are transmitted through "virtual" BECs with erasure probability \tilde{p}_k , where

$$\tilde{p}_k = \sum_{q=1}^M a_{k,q} p_q$$

• Example: baseline/uniform bit mapper, where $a_{k,q} = 1/M$ for all $k, q \implies$ all virtual BECs are the same

	Density Evolution 0●0	Application 000	CHALMERS

	Density Evolution 0●0	Application 000	CHALMERS
	Donsity Ev	volution	

• What happens asymptotically for $n \to \infty$?

Introduction 000	Code Construction	Density Evolution O●O	Application 000	Conclusion O	CHALMERS
		Donsity Ev	volution		

- What happens asymptotically for $n \to \infty$?
- Let $p_k = c_k/n$ for $c_k > 0$ and $k \in \{1, 2, ..., M\}$, where c_k is the effective channel quality of the k-th BEC

	Density Evolution 0●0	Application 000	
		1	 OTIALMENS

- What happens asymptotically for $n \to \infty$?
- Let $p_k = c_k/n$ for $c_k > 0$ and $k \in \{1, 2, ..., M\}$, where c_k is the effective channel quality of the k-th BEC
- Bit mapper transforms these into effective channel qualities for the virtual BECs of each VN class: $\tilde{c}_{t,t'}(i,j) \leftrightarrow \tilde{c}_k = \sum_{q=1}^M a_{k,q} c_q$

	Density Evolution ○●○	Application 000	CHALMERS

- What happens asymptotically for $n \to \infty$?
- Let $p_k = c_k/n$ for $c_k > 0$ and $k \in \{1, 2, ..., M\}$, where c_k is the effective channel quality of the k-th BEC
- Bit mapper transforms these into effective channel qualities for the virtual BECs of each VN class: $\tilde{c}_{t,t'}(i,j) \leftrightarrow \tilde{c}_k = \sum_{q=1}^M a_{k,q} c_q$
- One parameter $x_{i,t}^{(\ell)}$ is tracked per CN class : (asymptotic) probability that a randomly chosen erased bit corresponding to a *t*-erasure correcting component code at position *i* is not recovered

	Density Evolution ○●○	Application 000	CHALMERS

- What happens asymptotically for $n \to \infty$?
- Let $p_k = c_k/n$ for $c_k > 0$ and $k \in \{1, 2, ..., M\}$, where c_k is the effective channel quality of the k-th BEC
- Bit mapper transforms these into effective channel qualities for the virtual BECs of each VN class: $\tilde{c}_{t,t'}(i,j) \leftrightarrow \tilde{c}_k = \sum_{q=1}^M a_{k,q} c_q$
- One parameter $x_{i,t}^{(\ell)}$ is tracked per CN class : (asymptotic) probability that a randomly chosen erased bit corresponding to a *t*-erasure correcting component code at position *i* is not recovered

$$x_{i,t}^{(\ell)} = \Psi_{\geq t} \left(\frac{1}{L} \sum_{j=1}^{L} \eta_{i,j} \sum_{t'=1}^{t_{\text{max}}} \tilde{c}_{t,t'}(i,j) \tau_{t'}(j) x_{j,t'}^{(\ell-1)} \right)$$

	Density Evolution ○●○	Application 000	CHALMERS

- What happens asymptotically for $n \to \infty$?
- Let $p_k = c_k/n$ for $c_k > 0$ and $k \in \{1, 2, ..., M\}$, where c_k is the effective channel quality of the k-th BEC
- Bit mapper transforms these into effective channel qualities for the virtual BECs of each VN class: $\tilde{c}_{t,t'}(i,j) \leftrightarrow \tilde{c}_k = \sum_{q=1}^M a_{k,q} c_q$
- One parameter $x_{i,t}^{(\ell)}$ is tracked per CN class : (asymptotic) probability that a randomly chosen erased bit corresponding to a *t*-erasure correcting component code at position *i* is not recovered

$$\begin{aligned} x_{i,t}^{(\ell)} &= \Psi_{\geq t} \left(\frac{1}{L} \sum_{j=1}^{L} \eta_{i,j} \sum_{t'=1}^{t_{\text{max}}} \tilde{c}_{t,t'}(i,j) \tau_{t'}(j) x_{j,t'}^{(\ell-1)} \right) \end{aligned}$$

8/13

	Density Evolution 0●0	Application 000	CHALMERS

- What happens asymptotically for $n \to \infty$?
- Let $p_k = c_k/n$ for $c_k > 0$ and $k \in \{1, 2, ..., M\}$, where c_k is the effective channel quality of the k-th BEC
- Bit mapper transforms these into effective channel qualities for the virtual BECs of each VN class: $\tilde{c}_{t,t'}(i,j) \leftrightarrow \tilde{c}_k = \sum_{q=1}^M a_{k,q} c_q$
- One parameter x^(\ell)_{i,t} is tracked per CN class : (asymptotic) probability that a randomly chosen erased bit corresponding to a *t*-erasure correcting component code at position *i* is not recovered

$$x_{i,t}^{(\ell)} = \Psi_{\geq t} \left(\frac{1}{L} \sum_{j=1}^{L} \eta_{i,j} \sum_{t'=1}^{t_{max}} \tilde{c}_{t,t'}(i,j)\tau_{t'}(j) x_{j,t'}^{(\ell-1)} \right)$$

	Density Evolution ○●○	Application 000	CHALMERS

- What happens asymptotically for $n \to \infty$?
- Let $p_k = c_k/n$ for $c_k > 0$ and $k \in \{1, 2, ..., M\}$, where c_k is the effective channel quality of the k-th BEC
- Bit mapper transforms these into effective channel qualities for the virtual BECs of each VN class: $\tilde{c}_{t,t'}(i,j) \leftrightarrow \tilde{c}_k = \sum_{q=1}^M a_{k,q} c_q$
- One parameter $x_{i,t}^{(\ell)}$ is tracked per CN class : (asymptotic) probability that a randomly chosen erased bit corresponding to a *t*-erasure correcting component code at position *i* is not recovered

code construction parameters

	Density Evolution ○●○	Application 000	CHALMERS

- What happens asymptotically for $n \to \infty$?
- Let $p_k = c_k/n$ for $c_k > 0$ and $k \in \{1, 2, ..., M\}$, where c_k is the effective channel quality of the k-th BEC
- Bit mapper transforms these into effective channel qualities for the virtual BECs of each VN class: $\tilde{c}_{t,t'}(i,j) \leftrightarrow \tilde{c}_k = \sum_{q=1}^M a_{k,q} c_q$
- One parameter $x_{i,t}^{(\ell)}$ is tracked per CN class : (asymptotic) probability that a randomly chosen erased bit corresponding to a *t*-erasure correcting component code at position *i* is not recovered

DE for Det. GPCs with Higher-Order Modulation

	Density Evolution 00●	Application	CHAIMERS

• Density evolution depends on effective channel qualities $c = (c_1, \dots, c_M)$ of the parallel BECs

- Density evolution depends on effective channel qualities $c = (c_1, \dots, c_M)$ of the parallel BECs
- c is admissable if $\lim_{\ell\to\infty}x_{i,t}^{(\ell)}=0$ for all i,t (successful decoding with high probability)

- Density evolution depends on effective channel qualities $c = (c_1, \ldots, c_M)$ of the parallel BECs
- c is admissable if $\lim_{\ell\to\infty} x_{i,t}^{(\ell)}=0$ for all i,t (successful decoding with high probability)
- For a given code and bit mapper, one may then define threshold regions

Introduction Code Construction Density Evolution Application Conclusion 000 00 00 00 00 0 CHALMERS

Decoding Thresholds

- Density evolution depends on effective channel qualities $\boldsymbol{c} = (c_1, \ldots, c_M)$ of the parallel BECs
- c is admissable if $\lim_{\ell\to\infty} x_{i,t}^{(\ell)}=0$ for all i,t (successful decoding with high probability)
- For a given code and bit mapper, one may then define threshold regions
- Simplification: effective channel qualities are linearly parameterized by a single parameter c (think "signal-to-noise ratio"), i.e., for $k \in \{1, ..., M\}$

$$c_k = cb_k,$$

with fixed b_k

Introduction Code Construction Density Evolution Application Conclusion 000 00 00 000 0 CHALMERS

Decoding Thresholds

- Density evolution depends on effective channel qualities $c = (c_1, \dots, c_M)$ of the parallel BECs
- c is admissable if $\lim_{\ell\to\infty} x_{i,t}^{(\ell)}=0$ for all i,t (successful decoding with high probability)
- For a given code and bit mapper, one may then define threshold regions
- Simplification: effective channel qualities are linearly parameterized by a single parameter c (think "signal-to-noise ratio"), i.e., for $k \in \{1, ..., M\}$

$$c_k = cb_k,$$

with fixed b_k

• In this case, one may define decoding thresholds as usual:

$$\bar{c} = \sup\{c > 0 \mid \lim_{\ell \to \infty} x_{i,t}^{(\ell)} = 0 \text{ for all } i, t\}$$

Introduction 000	Code Construction OO	Density Evolution	Application ●00	Conclusion O	CHALMERS

Spectrally-Efficient Communication

fiber-optical link

Introduction 000	Code Construction	Density Evolution 000	Application •00	Conclusion O	CHALMERS

Spectrally-Efficient Communication

000	001	011	010	110	111	101	100
	-		-	•		-	· · ·
_	_	_	_		_		_

000	001	011	010	110	111	101	100
-	-	-		•	-	-	
_			_		_		_

• Approximate setup: parallel binary symmetric channels (BSCs) with different crossover probabilities p_1, \ldots, p_M

• Approximate setup: parallel binary symmetric channels (BSCs) with different crossover probabilities p_1, \ldots, p_M

- Approximate setup: parallel binary symmetric channels (BSCs) with different crossover probabilities p_1, \ldots, p_M
- Nearest-neighbor approximation: $p_k \approx b_k \bar{p}(\rho)$, $b_k = M 2^{k-1}/(2^M 1)$,

$$\bar{p}(\rho) = \frac{2^M - 1}{M2^{M-1}} Q\left(\sqrt{\frac{3\rho}{2^{2M} - 1}}\right)$$

- Approximate setup: parallel binary symmetric channels (BSCs) with different crossover probabilities p_1, \ldots, p_M
- Nearest-neighbor approximation: $p_k \approx b_k \bar{p}(\rho)$, $b_k = M 2^{k-1}/(2^M 1)$,

$$\bar{p}(\rho) = \frac{2^M - 1}{M2^{M-1}} Q\left(\sqrt{\frac{3\rho}{2^{2M} - 1}}\right)$$

BEC analysis (alternatively, assume no decoder miscorrections)

- Approximate setup: parallel binary symmetric channels (BSCs) with different crossover probabilities p_1, \ldots, p_M
- Nearest-neighbor approximation: $p_k \approx b_k \bar{p}(\rho)$, $b_k = M 2^{k-1}/(2^M 1)$,

$$\bar{p}(\rho) = \frac{2^M - 1}{M2^{M-1}} Q\left(\sqrt{\frac{3\rho}{2^{2M} - 1}}\right)$$

- BEC analysis (alternatively, assume no decoder miscorrections)
- Approximate setup: parallel binary symmetric channels (BSCs) with different crossover probabilities p_1, \ldots, p_M
- Nearest-neighbor approximation: $p_k \approx b_k \bar{p}(\rho)$, $b_k = M 2^{k-1}/(2^M 1)$,

$$\bar{p}(\rho) = \frac{2^M - 1}{M2^{M-1}} Q\left(\sqrt{\frac{3\rho}{2^{2M} - 1}}\right)$$

• Recall linear parametrization: $p_k = cb_k/n \implies \rho = \bar{p}^{-1}(c/n)$

• Approximate setup: parallel binary symmetric channels (BSCs) with different crossover probabilities p_1, \ldots, p_M

BEC analysis (alternatively, assume no decoder miscorrections)

$$\bar{p}(\rho) = \frac{2^M - 1}{M2^{M-1}} Q\left(\sqrt{\frac{3\rho}{2^{2M} - 1}}\right)$$

- Recall linear parametrization: $p_k = cb_k/n \implies \rho = \bar{p}^{-1}(c/n)$
- Example: threshold $\bar{c} = 10.63$ and M = 4. For n = 1600, waterfall region expected at $\rho = \bar{p}^{-1}(c/n) \approx 26.11 \,\mathrm{dB}$

Introduction	Code Construction	Density Evolution	Application	Conclusion	CHALMERS
000	OO	000	OOO	O	
000	00	000	000	0	CHALMERS

Bit Mapper Optimization

Bit Mapper Optimization

Problem Formulation ([Richter et al., 2007], [Cheng et al., 2012], ...)

Optimize the bit mapper A for a given code and signal constellation

Bit Mapper Optimization

Problem Formulation ([Richter et al., 2007], [Cheng et al., 2012], ...) Optimize the bit mapper A for a given code and signal constellation

• For illustration purposes, we consider irregular half-product codes, where $\eta = 1, \tau_5 = 0.667, \tau_8 = 0.333 \implies K = 3$ VN classes

Bit Mapper Optimization

Problem Formulation ([Richter et al., 2007], [Cheng et al., 2012], ...) Optimize the bit mapper A for a given code and signal constellation

• For illustration purposes, we consider irregular half-product codes, where $\eta = 1$, $\tau_5 = 0.667$, $\tau_8 = 0.333 \implies K = 3$ VN classes

• Signal constellation: 16-PAM (256-QAM) $\implies M = 4$ distinct channels

DE for Det. GPCs with Higher-Order Modulation | C. Häger, A. Graell i Amat, H. D. Pfister, F. Brännström 11/13

Introduction Code Construction Density Evolution Application Conclusion 000 000 000 000 0 CHALMERS

Bit Mapper Optimization

Problem Formulation ([Richter et al., 2007], [Cheng et al., 2012], ...) Optimize the bit mapper A for a given code and signal constellation

• For illustration purposes, we consider irregular half-product codes, where $\eta = 1$, $\tau_5 = 0.667$, $\tau_8 = 0.333 \implies K = 3$ VN classes

- Signal constellation: 16-PAM (256-QAM) $\implies M = 4$ distinct channels
- Heuristic threshold maximization via differential evolution algorithm

Introduction Code Construction Density Evolution Application Conclusion 000 000 000 000 0 CHALMERS

Bit Mapper Optimization

Problem Formulation ([Richter et al., 2007], [Cheng et al., 2012], ...) Optimize the bit mapper A for a given code and signal constellation

• For illustration purposes, we consider irregular half-product codes, where $\eta = 1$, $\tau_5 = 0.667$, $\tau_8 = 0.333 \implies K = 3$ VN classes

- Signal constellation: 16-PAM (256-QAM) $\implies M = 4$ distinct channels
- Heuristic threshold maximization via differential evolution algorithm
- Validation with n = 1600 and $\ell = 50$ iterations

DE for Det. GPCs with Higher-Order Modulation | C. Häger, A. Graell i Amat, H. D. Pfister, F. Brännström 11/13

DE for Det. GPCs with Higher-Order Modulation | C. Häger, A. Graell i Amat, H. D. Pfister, F. Brännström

DE for Det. GPCs with Higher-Order Modulation

DE for Det. GPCs with Higher-Order Modulation | C. Häger, A. Graell i Amat, H. D. Pfister, F. Brännström

DE for Det. GPCs with Higher-Order Modulation | C. Häger, A. Graell i Amat, H. D. Pfister, F. Brännström

Introduction 000	Code Construction	Density Evolution 000	Application 000	Conclusion •	CHALMERS

Introduction 000	Code Construction	Density Evolution	Application 000	Conclusion	CHALMERS
		Conclus	sions		

• Certain deterministic codes can be analyzed with density evolution over the BEC and over parallel BECs.

Introduction	Code Construction	Density Evolution	Application	Conclusion	CHALMERS
000	OO	000	000	•	
		Conclus	sions		

- Certain deterministic codes can be analyzed with density evolution over the BEC and over parallel BECs.
- Analysis can be used to predict the performance and optimize bit mappers in coded modulation systems with a hard-decision symbol detector.

Introduction 000	Code Construction	Density Evolution 000	Application 000	Conclusion	CHALMERS

- Certain deterministic codes can be analyzed with density evolution over the BEC and over parallel BECs.
- Analysis can be used to predict the performance and optimize bit mappers in coded modulation systems with a hard-decision symbol detector.
- Bit mapper optimization typically leads to moderate performance improvements, albeit at almost no increased system complexity cost.

Introduction	Code Construction	Density Evolution	Application	Conclusion	CHALMERS
000	00	000	000	•	
		Conclus	sions		

- Certain deterministic codes can be analyzed with density evolution over the BEC and over parallel BECs.
- Analysis can be used to predict the performance and optimize bit mappers in coded modulation systems with a hard-decision symbol detector.
- Bit mapper optimization typically leads to moderate performance improvements, albeit at almost no increased system complexity cost.
- Future work should consider the joint design of the code and bit mapper.

Introduction 000	Code Construction	Density Evolution 000	Application 000	Conclusion	CHALMERS

- Certain deterministic codes can be analyzed with density evolution over the BEC and over parallel BECs.
- Analysis can be used to predict the performance and optimize bit mappers in coded modulation systems with a hard-decision symbol detector.
- Bit mapper optimization typically leads to moderate performance improvements, albeit at almost no increased system complexity cost.
- Future work should consider the joint design of the code and bit mapper.

Thank you!

FIBER-OPTIC COMMUNICATIONS

DE for Det. GPCs with Higher-Order Modulation | C. Häger, A. Graell i Amat, H. D. Pfister, F. Brännström 13/13

References I

