Spatially-Coupled Codes for Optical Communications: State-of-the-Art and Open Problems

> Alexandre Graell i Amat, Christian Häger, Fredrik Brännström, and Erik Agrell

Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden

20th OptoElectronics and Communications Conference (OECC) Shanghai, China, July 2, 2015

FIBER-OPTIC COMMUNICATIONS RESEARCH CENTER

CHALMERS

Motivation

CHALMERS

Motivation

CHALMERS

	1993	2000	2003
Coding scheme			
NCG (10^{-13})			

Motivation

	1993	2000	2003
Coding scheme	algebraic codes RS (255, 239) hard		
NCG (10^{-13})	$\sim 5.8~{\rm dB}$		

Motivation

	1993	2000	2003
Coding scheme	algebraic codes RS (255, 239) hard	concatenated codes RS+BCH, RS+RS hard	
NCG (10^{-13})	$\sim 5.8~{\rm dB}$	$7-9~\mathrm{dB}$	

Motivation

	1993	2000	2003
Coding scheme	algebraic codes RS (255, 239) hard	concatenated codes RS+BCH, RS+RS hard	iteratively decodable codes block turbo codes & LDPC codes soft
NCG (10^{-13})	$\sim 5.8~{\rm dB}$	$7-9 \; dB$	$\sim 10~{\rm dB}$

LDPC codes: Powerful codes with low complexity SDD

LDPC codes: Powerful codes with low complexity SDD

Requirements

(a) Very high throughputs (100 Gbps or higher)

CHALMERS

- (a) Very high throughputs (100 Gbps or higher)
- (b) Very high net coding gains (close-to-capacity performance)

LDPC codes: Powerful codes with low complexity SDD

- (a) Very high throughputs (100 Gbps or higher)
- (b) Very high net coding gains (close-to-capacity performance)
- (c) Very low error rates ($\sim 10^{-15}$)

CHALMERS

- (a) Very high throughputs (100 Gbps or higher)
- (b) Very high net coding gains (close-to-capacity performance)
- (c) Very low error rates ($\sim 10^{-15}$)
 - Regular LDPC Codes

CHALMERS

- (a) Very high throughputs (100 Gbps or higher)
- (b) Very high net coding gains (close-to-capacity performance)
- (c) Very low error rates ($\sim 10^{-15}$)
 - Regular LDPC Codes
 - Minimum distance grows linearly with block length \longrightarrow low error rates! (c)

CHALMERS

Requirements

- (a) Very high throughputs (100 Gbps or higher)
- (b) Very high net coding gains (close-to-capacity performance)
- (c) Very low error rates ($\sim 10^{-15}$)

Regular LDPC Codes

- Minimum distance grows linearly with block length \longrightarrow low error rates! (c)
- Drawback: non capacity-approaching under low-complexity BP decoding.

CHALMERS

Requirements

- (a) Very high throughputs (100 Gbps or higher)
- (b) Very high net coding gains (close-to-capacity performance)
- (c) Very low error rates ($\sim 10^{-15}$)

Regular LDPC Codes

- Minimum distance grows linearly with block length \longrightarrow low error rates! (c)
- Drawback: non capacity-approaching under low-complexity BP decoding.
- Irregular LDPC Codes

CHALMERS

Requirements

- (a) Very high throughputs (100 Gbps or higher)
- (b) Very high net coding gains (close-to-capacity performance)
- (c) Very low error rates ($\sim 10^{-15}$)

• Regular LDPC Codes

- Minimum distance grows linearly with block length \longrightarrow low error rates! (c)
- Drawback: non capacity-approaching under low-complexity BP decoding.
- Irregular LDPC Codes
 - Capacity approaching with BP decoding. (b)

CHALMERS

Requirements

- (a) Very high throughputs (100 Gbps or higher)
- (b) Very high net coding gains (close-to-capacity performance)
- (c) Very low error rates ($\sim 10^{-15}$)

• Regular LDPC Codes

- Minimum distance grows linearly with block length \longrightarrow low error rates! (c)
- Drawback: non capacity-approaching under low-complexity BP decoding.
- Irregular LDPC Codes
 - Capacity approaching with BP decoding. (b)
 - Drawbacks: error floor, non-universal.

A new coding paradigm: Spatially-coupled LDPC codes

The best of regular and irregular LDPC codes

A new coding paradigm: Spatially-coupled LDPC codes

The best of regular and irregular LDPC codes

• Capacity achieving with low-complexity BP decoding.

A new coding paradigm: Spatially-coupled LDPC codes

The best of regular and irregular LDPC codes

- Capacity achieving with low-complexity BP decoding.
- Linear distance growth rate (low error rates!).

A new coding paradigm: Spatially-coupled LDPC codes

The best of regular and irregular LDPC codes

- Capacity achieving with low-complexity BP decoding.
- Linear distance growth rate (low error rates!).
- Universal property.

A new coding paradigm: Spatially-coupled LDPC codes

The best of regular and irregular LDPC codes

- Capacity achieving with low-complexity BP decoding.
- Linear distance growth rate (low error rates!).
- Universal property.

Main principle

The BP threshold saturates to the optimal MAP threshold of the underlying LDPC block code ensemble.

Spatial coupling gain

• The BP threshold saturates to the MAP threshold.

In this talk

Spatially-coupled codes: promising candidates for future fiber-optical systems

In this talk

Spatially-coupled codes: promising candidates for future fiber-optical systems

Outline:

- 1. Basics of SC-LDPC Codes
- 2. SC-LDPC Codes and high-order modulation (SDD).
- 3. Spatially-coupled codes for HDD (staircase codes and extended staircase codes)

Spatially-coupled LDPC codes

Spatially-coupled LDPC codes

• A SC-LDPC code is constructed from an (regular) LDPC code applying a copy & coupling procedure.

Spatial coupling: Code construction

M = 10 code bits $\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$

7 / 23

protograph rate- $1/2\ (3,6)\text{-regular LDPC}$ code

Spatial coupling: Code construction

copy the protograph \boldsymbol{L} times

Spatial coupling: Code construction

Spatial coupling: Code construction

Spatial coupling: Code construction

Spatial coupling: Code construction

Spatial coupling: Code construction

connect (couple) the protographs

Spatial coupling: Code construction

(terminated) coupled chain of L = 5 LDPC codes

Spatial coupling: Code construction

Spatial coupling: Code construction

Tanner graph (3, 6, L = 5) terminated SC-LDPC code

Spatially-Coupled Codes for Optical Communications | A. Graell i Amat, C. Häger, F. Brännström, E. Agrell 9/23

Spatial coupling: Code construction

regular graph...except at the boundaries

Spatial coupling: Code construction

regular graph...except at the boundaries

Spatial coupling: Code construction

regular graph...except at the boundaries

predicted BER per spatial position

CHALMERS

Decoding Wave (terminated SC-LDPC code)

spatial position

Spatially-Coupled Codes for Optical Communications | A. Graell i Amat, C. Häger, F. Brännström, E. Agrell 10/23

Decoding Wave (terminated SC-LDPC code)

predicted BER per spatial position

Decoding Wave (terminated SC-LDPC code)

predicted BER per spatial position

Decoding Wave (terminated SC-LDPC code)

Spatially-Coupled Codes for Optical Communications | A. Graell i Amat, C. Häger, F. Brännström, E. Agrell

10 / 23

Decoding Wave (terminated SC-LDPC code)

Spatially-Coupled Codes for Optical Communications | A. Graell i Amat, C. Häger, F. Brännström, E. Agrell

10 / 23

Decoding Wave (terminated SC-LDPC code)

Spatially-Coupled Codes for Optical Communications | A. Graell i Amat, C. Häger, F. Brännström, E. Agrell 10/23

Decoding Wave (terminated SC-LDPC code)

predicted BER per spatial position

Decoding Wave (terminated SC-LDPC code)

predicted BER per spatial position

Decoding Wave (terminated SC-LDPC code)

predicted BER per spatial position

Successful decoding!

Terminated

CHALMERS

check node degrees

slightly irregular

performance

capacity-approaching (wave effect)

linear distance growth

Terminated

CHALMERS

check node degrees

slightly irregular

performance

capacity-approaching (wave effect)

linear distance growth

rate $R(L) = R - R_{loss}(L)$ (larger OH)

check node degrees

slightly irregular

performance

capacity-approaching (wave effect)

linear distance growth

rate $R(L) = R - R_{loss}(L)$ (larger OH)

Terminated

CHALMERS

check node degrees

slightly irregular

performance

capacity-approaching (wave effect)

linear distance growth

 $R(L) = R - R_{\mathsf{loss}}(L)$ rate (larger OH)

Spatially-Coupled Codes for Optical Communications | A. Graell i Amat, C. Häger, F. Brännström, E. Agrell

12 / 23

Terminated

Tailbiting

CHALMERS

check node degrees

slightly irregular

regular

performance

capacity-approaching (wave effect)

linear distance growth

rate

 $R(L) = R - R_{\mathsf{loss}}(L)$ (larger OH)

performance capacity-approaching (wave effect) linear distance growth linear distance growth rate $R(L) = R - R_{loss}(L)$ R (no rate loss) (larger OH)

Spatially-Coupled Codes for Optical Communications | A. Graell i Amat, C. Häger, F. Brännström, E. Agrell 12 / 23

Terminated

Tailbiting

check node degrees	slightly irregular	regular
performance	capacity-approaching (wave effect)	comparable to regular LDPC (no wave effect)
	linear distance growth	linear distance growth
rate	$\begin{split} R(L) &= R - R_{\rm loss}(L) \\ & \text{(larger OH)} \end{split}$	$R \ ({\sf no} \ {\sf rate} \ {\sf loss})$

Spatially-Coupled Codes for Optical Communications | A. Graell i Amat, C. Häger, F. Brännström, E. Agrell 12

• Bit mapper determines allocation of the coded bits to the modulation bits.

[1] C. Häger, A. Graell i Amat, F. Brännström, A. Alvarado, E. Agrell, "Terminated and Tailbiting Spatially-Coupled Codes with Optimized Bit Mappings for Spectrally Efficient Fiber-Optical Systems," *IEEE/OSA J. Lightwave Technology, April 2015.*

Spatially-Coupled Codes for Optical Communications | A. Graell i Amat, C. Häger, F. Brännström, E. Agrell 13 / 23

- Bit mapper determines allocation of the coded bits to the modulation bits.
- Baseline bit mapper: sequential or random.

[1] C. Häger, A. Graell i Amat, F. Brännström, A. Alvarado, E. Agrell, "Terminated and Tailbiting Spatially-Coupled Codes with Optimized Bit Mappings for Spectrally Efficient Fiber-Optical Systems," *IEEE/OSA J. Lightwave Technology, April 2015.*

- Bit mapper determines allocation of the coded bits to the modulation bits.
- Baseline bit mapper: sequential or random.
- In a high-order modulation, the different modulation bits have different protection levels.

[1] C. Häger, A. Graell i Amat, F. Brännström, A. Alvarado, E. Agrell, "Terminated and Tailbiting Spatially-Coupled Codes with Optimized Bit Mappings for Spectrally Efficient Fiber-Optical Systems," *IEEE/OSA J. Lightwave Technology, April 2015.*

- Bit mapper determines allocation of the coded bits to the modulation bits.
- Baseline bit mapper: sequential or random.
- In a high-order modulation, the different modulation bits have different protection levels.
- Unequal error protection can be exploited to initiate a wave effect for tailbiting SC-LDPC codes!

[1] C. Häger, A. Graell i Amat, F. Brännström, A. Alvarado, E. Agrell, "Terminated and Tailbiting Spatially-Coupled Codes with Optimized Bit Mappings for Spectrally Efficient Fiber-Optical Systems," *IEEE/OSA J. Lightwave Technology, April 2015.*

- Bit mapper determines allocation of the coded bits to the modulation bits.
- Baseline bit mapper: sequential or random.
- In a high-order modulation, the different modulation bits have different protection levels.
- Unequal error protection can be exploited to initiate a wave effect for tailbiting SC-LDPC codes!
- Bit mapper is optimized to optimize the decoding threshold.

[1] C. Häger, A. Graell i Amat, F. Brännström, A. Alvarado, E. Agrell, "Terminated and Tailbiting Spatially-Coupled Codes with Optimized Bit Mappings for Spectrally Efficient Fiber-Optical Systems," *IEEE/OSA J. Lightwave Technology, April 2015.*

• Gaussian channel, 64-QAM, rate terminated = 0.741 (OH= 35%), rate tailbiting = 0.75 (OH= 33%), 60000 decoding delay.

- Gaussian channel, 64-QAM, rate terminated = 0.741 (OH= 35%), rate tailbiting = 0.75 (OH= 33%), 60000 decoding delay.
- Gain of ≈ 0.55 dB at a BER of 10^{-5} .

- Gaussian channel, 64-QAM, rate terminated = 0.741 (OH= 35%), rate tailbiting = 0.75 (OH= 33%), 60000 decoding delay.
- Gain of ≈ 0.55 dB at a BER of 10^{-5} .

- Gaussian channel, 64-QAM, rate terminated = 0.741 (OH= 35%), rate tailbiting = 0.75 (OH= 33%), 60000 decoding delay.
- Gain of ≈ 0.55 dB at a BER of 10^{-5} .
- Approximately the same gap to capacity for both optimized systems.

Spatial coupling is a very general concept!

• Spatially-coupled codes for HDD (e.g., staircase codes).

Staircase Codes (and Product Codes)

Staircase Codes (and Product Codes)

• Start with a binary linear code $C(n, k, d_{\min})$ as a "building block"
Staircase Codes (and Product Codes)

rectangular array [Elias 1954]

Example: n = 4

Staircase Codes (and Product Codes)

rectangular array [Elias 1954]

Example: n = 4

each row/column is a codeword in C(2n code constraints in total)

Staircase Codes (and Product Codes)

rectangular array [Elias 1954]

Staircase Codes (and Product Codes)

rectangular array [Elias 1954]

- Start with a binary linear code $\mathcal{C}(n,k,d_{\min})$ as a "building block"
- C: BCH code defined by (ν, t, s) , where
 - ν: Galois-field extension degree
 - t: error-correction capability
 - s: shortening parameter

- Start with a binary linear code $\mathcal{C}(n,k,d_{\min})$ as a "building block"
- C: BCH code defined by (ν, t, s) , where
 - ν: Galois-field extension degree
 - t: error-correction capability
 - s: shortening parameter
- \Rightarrow length $n = 2^{\nu} 1 s$, dimension $k = 2^{\nu} \nu t 1 s$

each row/column is a codeword in $\ensuremath{\mathcal{C}}$

. . .

- Start with a binary linear code $\mathcal{C}(n,k,d_{\min})$ as a "building block"
- C: BCH code defined by (ν, t, s) , where
 - ν: Galois-field extension degree
 - t: error-correction capability
 - s: shortening parameter
- \Rightarrow length $n = 2^{\nu} 1 s$, dimension $k = 2^{\nu} \nu t 1 s$
- Staircase code rate R = 2k/n 1 and FEC overhead OH = 1/R 1

each row/column is a codeword in C

- Start with a binary linear code $C(n, k, d_{\min})$ as a "building block"
- C: BCH code defined by (ν, t, s) , where
 - ν : Galois-field extension degree
 - t: error-correction capability
 - s: shortening parameter
- \Rightarrow length $n = 2^{\nu} 1 s$, dimension $k = 2^{\nu} \nu t 1 s$
- Staircase code rate R = 2k/n 1 and FEC overhead OH = 1/R 1

Problem Formulation

For fixed OH, find a "good" triple (ν, t, s) .

. . .

Decoding Algorithm and Previous Work

• Iterate between BCH decoders for all rows/columns in a sliding window.

- Iterate between BCH decoders for all rows/columns in a sliding window.
- Iterative intrinsic message-passing (IMP) with "hard" (binary) messages.

- Iterate between BCH decoders for all rows/columns in a sliding window.
- Iterative intrinsic message-passing (IMP) with "hard" (binary) messages.
- Significant decoder data flow reduction compared to LDPC codes \rightarrow very high-speed optical communications.

- Iterate between BCH decoders for all rows/columns in a sliding window.
- Iterative intrinsic message-passing (IMP) with "hard" (binary) messages.
- Significant decoder data flow reduction compared to LDPC codes \rightarrow very high-speed optical communications.

Previous work [Kschischang et al.]

- Iterate between BCH decoders for all rows/columns in a sliding window.
- Iterative intrinsic message-passing (IMP) with "hard" (binary) messages.
- Significant decoder data flow reduction compared to LDPC codes \rightarrow very high-speed optical communications.

Previous work [Kschischang et al.]

• Parameter space based on practical consideration: product set of $OH \in \{1/i : i = 3, 4, ..., 16\}, \nu \in \{8, 9, 10, 11, 12\}, t \in \{2, 3, 4, 5, 6\}.$

- Iterate between BCH decoders for all rows/columns in a sliding window.
- Iterative intrinsic message-passing (IMP) with "hard" (binary) messages.
- Significant decoder data flow reduction compared to LDPC codes \rightarrow very high-speed optical communications.

Previous work [Kschischang et al.]

- Parameter space based on practical consideration: product set of $OH \in \{1/i : i = 3, 4, \dots, 16\}, \nu \in \{8, 9, 10, 11, 12\}, t \in \{2, 3, 4, 5, 6\}.$
- Software simulations to predict staircase code performance.

- Iterate between BCH decoders for all rows/columns in a sliding window.
- Iterative intrinsic message-passing (IMP) with "hard" (binary) messages.
- Significant decoder data flow reduction compared to LDPC codes \rightarrow very high-speed optical communications.

Previous work [Kschischang et al.]

- Parameter space based on practical consideration: product set of $OH \in \{1/i : i = 3, 4, \dots, 16\}, \nu \in \{8, 9, 10, 11, 12\}, t \in \{2, 3, 4, 5, 6\}.$
- Software simulations to predict staircase code performance.
- Computationally intensive: use simplified BCH decoders, which do not account for miscorrections.

Staircase codes as SC-GLDPC codes

Observation

Staircase codes can be seen as a class of spatially-coupled generalized LDPC (SC-GLDPC) codes!

[2] C. Häger, A. Graell i Amat, H. Pfister, F. Brännström, A. Alvarado, E. Agrell, "On Parameter Optimization for Staircase Codes," OFC 2015.

Spatially-Coupled Codes for Optical Communications | A. Graell i Amat, C. Häger, F. Brännström, E. Agrell 18 / 23

Staircase codes as SC-GLDPC codes

Observation

Staircase codes can be seen as a class of spatially-coupled generalized LDPC (SC-GLDPC) codes!

 Use density evolution and ensemble thresholds to optimize parameters, can account for miscorrections assuming extrinsic message passing (EMP).

[2] C. Häger, A. Graell i Amat, H. Pfister, F. Brännström, A. Alvarado, E. Agrell, "On Parameter Optimization for Staircase Codes," *OFC 2015*.

Spatially-Coupled Codes for Optical Communications | A. Graell i Amat, C. Häger, F. Brännström, E. Agrell 18 / 23

Staircase codes as SC-GLDPC codes

Observation

Staircase codes can be seen as a class of spatially-coupled generalized LDPC (SC-GLDPC) codes!

- Use density evolution and ensemble thresholds to optimize parameters, can account for miscorrections assuming extrinsic message passing (EMP).
- Extended construction.

[2] C. Häger, A. Graell i Amat, H. Pfister, F. Brännström, A. Alvarado, E. Agrell, "On Parameter Optimization for Staircase Codes," *OFC 2015*.

Spatially-Coupled Codes for Optical Communications | A. Graell i Amat, C. Häger, F. Brännström, E. Agrell 18 / 23

Spatially-Coupled Codes for Optical Communications | A. Graell i Amat, C. Häger, F. Brännström, E. Agrell 19/23

C₁ with (ν, t, s) = (9, 5, 151) *[Zhang and Kschischang, JLT, 2014]
DE for (C₁, ∞, 30, 2) SC-GLDPC, adapted to sliding-window decoding

Spatially-Coupled Codes for Optical Communications | A. Graell i Amat, C. Häger, F. Brännström, E. Agrell 19/23

C₁ with (ν, t, s) = (9, 5, 151) * [Zhang and Kschischang, JLT, 2014]
DE for (C₁, ∞, 30, 2) SC-GLDPC, adapted to sliding-window decoding

Spatially-Coupled Codes for Optical Communications | A. Graell i Amat, C. Häger, F. Brännström, E. Agrell 19/23

- C_1 with $(\nu, t, s) = (9, 5, 151)$ *[Zhang and Kschischang, JLT, 2014]
- DE for $(C_1, \infty, 30, 2)$ SC-GLDPC, adapted to sliding-window decoding
- DE accurately predicts pre-FEC BER region where staircase performance curve "bends" into waterfall behavior

- C_1 with $(\nu, t, s) = (9, 5, 151)$ *[Zhang and Kschischang, JLT, 2014]
- DE for $(\mathcal{C}_1,\infty,30,2)$ SC-GLDPC, adapted to sliding-window decoding
- DE accurately predicts pre-FEC BER region where staircase performance curve "bends" into waterfall behavior
- Use decoding thresholds for parameter optimization

• Same parameter space as [Zhang and Kschischang, JLT, 2014] \rightarrow full table for all OHs in our OFC paper.

• Same parameter space as [Zhang and Kschischang, JLT, 2014] \rightarrow full table for all OHs in our OFC paper.

• Result for OH = 33.33%: C_2 defined by $(\nu, t, s) = (8, 3, 63)$.

- Same parameter space as [Zhang and Kschischang, JLT, 2014] \rightarrow full table for all OHs in our OFC paper.

• Result for OH = 33.33%: C_2 defined by $(\nu, t, s) = (8, 3, 63)$.
Example (OH = 33.33%): Density Evolution and Thresholds

- Same parameter space as [Zhang and Kschischang, JLT, 2014] \rightarrow full table for all OHs in our OFC paper.
- Result for OH = 33.33%: C_2 defined by $(\nu, t, s) = (8, 3, 63)$.
- Staircase codes with \mathcal{C}_1 and \mathcal{C}_2 have different slopes \Rightarrow DE gain prediction not preserved

Spatially-Coupled Codes for Optical Communications | A. Graell i Amat, C. Häger, F. Brännström, E. Agrell 19/23

CHALMERS

• Allow for q > 1 code constraints in each row/column of the staircase array

CHALMERS

 Allow for q > 1 code constraints in each row/column of the staircase array → improves steepness of BER curve.

Allow for q > 1 code constraints in each row/column of the staircase array
→ improves steepness of BER curve.

CHALMERS

 Allow for q > 1 code constraints in each row/column of the staircase array → improves steepness of BER curve.

CHALMERS

Allow for q > 1 code constraints in each row/column of the staircase array
→ improves steepness of BER curve.

CHALMERS

Allow for q > 1 code constraints in each row/column of the staircase array
→ improves steepness of BER curve.

CHALMERS

 Allow for q > 1 code constraints in each row/column of the staircase array → improves steepness of BER curve.

CHALMERS

CHALMERS

• Extended staircase code based on C_2 for q = 2

CHALMERS

- Extended staircase code based on C_2 for q=2
- Steeper waterfall performance (staircase block size $2 \cdot n/2 = 192$)

CHALMERS

- Extended staircase code based on \mathcal{C}_2 for q=2
- Steeper waterfall performance (staircase block size $2 \cdot n/2 = 192$)
- Staircase code with C_1 has block size n/2 = 180

Performance for soft and hard decision decoding

Performance for soft and hard decision decoding

CHALMERS

Performance for soft and hard decision decoding

CHALMERS

Performance for soft and hard decision decoding

CHALMERS

Conclusions

Conclusions

• Spatial coupling is a very general and powerful concept.

Conclusions

- Spatial coupling is a very general and powerful concept.
- Close-to-capacity performance for both HDD and SDD (with low complexity).

Conclusions

- Spatial coupling is a very general and powerful concept.
- Close-to-capacity performance for both HDD and SDD (with low complexity).

Open problems

• Error floor for SC-LDPC codes (SDD) still an open problem.

Conclusions

- Spatial coupling is a very general and powerful concept.
- Close-to-capacity performance for both HDD and SDD (with low complexity).

Open problems

- Error floor for SC-LDPC codes (SDD) still an open problem.
- SC-LDPC codes (SDD) with finite-precision BP.

Conclusions

- Spatial coupling is a very general and powerful concept.
- Close-to-capacity performance for both HDD and SDD (with low complexity).

Open problems

- Error floor for SC-LDPC codes (SDD) still an open problem.
- SC-LDPC codes (SDD) with finite-precision BP.
- SC-LDPC codes perform well in the presence of nonlinearities,

Conclusions

- Spatial coupling is a very general and powerful concept.
- Close-to-capacity performance for both HDD and SDD (with low complexity).

Open problems

- Error floor for SC-LDPC codes (SDD) still an open problem.
- SC-LDPC codes (SDD) with finite-precision BP.
- SC-LDPC codes perform well in the presence of nonlinearities, but...joint design of SC-LDPC code and modulation tailored to the nonlinear regime?

Conclusions

- Spatial coupling is a very general and powerful concept.
- Close-to-capacity performance for both HDD and SDD (with low complexity).

Open problems

- Error floor for SC-LDPC codes (SDD) still an open problem.
- SC-LDPC codes (SDD) with finite-precision BP.
- SC-LDPC codes perform well in the presence of nonlinearities, but...joint design of SC-LDPC code and modulation tailored to the nonlinear regime?

Thank you!

FIBER-OPTIC COMMUNICATIONS

RESEARCH CENTER