CHALMERS **UNIVERSITY OF TECHNOLOGY**

Abstract

We study the design of amplitude phase-shift keying (APSK) constellations for a coherent fiber-optical communication system where nonlinear phase noise is the main system impairment. A practical two-stage detection scheme is analyzed and we optimize APSK constellations in terms of symbol error probability (SEP) under two-stage detection. Performance gains of 3.2 dB can be achieved at a SEP of 10^{-2} compared to 16-QAM. We also demonstrate that in the presence of severe nonlinear distortions, it may become beneficial to sacrifice a constellation point or an entire constellation ring to reduce the average SEP.

Motivation

- Higher order modulation formats are crucial to increase spectral efficiency of optical transmission systems.
- The optical channel suffers from distortions that are absent for example in wireless channels, in particular nonlinear phase noise.
- Practical question: How much can we gain by optimizing the constellation compared to standard QAM?
- Theoretical question: How do optimal constellations look like for very strong nonlinearities?

Problem Statement

Definitions:

- $P = \mathbb{E}[|X|^2]$, input power (in [dBm])
- SNR, signal-to-additive-noise ratio

Goal: Which APSK constellation minimizes the SEP under two-stage detection for a given input power P?

- How many rings?
- How many points per ring?
- How to choose the radii?
- What phase offset?

Remark 1: For the two-stage detector, it can be shown that any phase-offset in the rings has no effect on the SEP. Thus, we set all phase offsets to zero.

Remark 2: We use the convention that, if there is only one point in the first ring, then this point is placed at the origin.

Design of APSK Constellations for Coherent Optical Channels with Nonlinear Phase Noise

Christian Häger¹, Alexandre Graell i Amat¹, Alex Alvarado², and Erik Agrell¹

¹Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden (e-mail: {christian.haeger, alexandre.graell, agrell}@chalmers.se) ²Department of Engineering, University of Cambridge, UK (e-mail: alex.alvarado@ieee.org)

