
Miscorrection-free Decoding of Staircase Codes

Christian Häger1,2 and Henry D. Pfister2

1Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
2Department of Electrical and Computer Engineering, Duke University, Durham, USA

Abstract

We propose a novel decoding algorithm for staircase codes which can prevent
or revert most undetected decoding errors, also known as miscorrections. The
algorithm significantly improves performance, while retaining a low-complexity
implementation suitable for high-speed optical transport networks (OTNs).

Motivation

◮ Hard-decision forward error correction (FEC) offers dramatically reduced
complexity compared to soft-decision FEC. Applications include
regional/metro OTNs [1], optical data center interconnects [2], etc.

◮ Focus here: Staircase codes [3]—built from short component codes and
decoded via iterative bounded-distance decoding (BDD)

◮ Problem: undetected decoding errors, or miscorrections, may arise during
BDD =⇒ additional errors are introduced (on top of transmission
errors) during iterative decoding

◮ Leads to significant performance degradation in practice [3], [5], [7]

◮ Notoriously difficult to analyze theoretically [4], [6], [8]

Staircase Codes

Staircase codes: Let C be a component code of length n and dimension k.
A staircase code is defined as the set of all matrix sequences Bk ∈ {0, 1}a×a,
k = 0, 1, 2, . . . , such that the rows in [B⊺

k−1, Bk] for all k ≥ 1 form valid
codewords of C, where a = n/2 and B0 is the all-zero matrix.

Component codes: We use extended t-error-correcting BCH codes.

Conventional decoding: ℓ iterations of BDD within a sliding window com-
prising W received blocks (matrices). Component codewords are identified by
a pair (i, j), where i ∈ {1, 2, . . . , W − 1} is the position relative to the current
window (see Figure 1) and j ∈ {1, 2, . . . , a} enumerates codewords.

1 k ← 0
2 while true do
3 for l = 1, 2, . . . , ℓ do
4 for i = W − 1, W − 2, . . . , 1 do
5 for j = 1, 2, . . . , a do
6 apply BDD to component codeword (i, j)

7 output decision for Bk and shift window
8 k ← k + 1

Proposed Anchor-Based Decoding

Miscorrections: Let r = c + e be a received
component codeword, i.e., c ∈ C, e ∈ {0, 1}n.
Applying BDD to r can result in

(1) c ∈ C if dH(r, c) = wH(e) ≤ t,

(2) c
′ ∈ C if wH(e) > t and dH(r, c

′) ≤ t,

(3) FAIL otherwise,

where dH, wH are Hamming distance and weight.
Case (2) corresponds to a miscorrection; often
ignored for theoretical analysis (referred to as
idealized decoding).

◮ Miscorrections lead to inconsistencies: two
component codewords that protect the
same bit may disagree on its value

◮ Idea: make certain codewords anchors and
trust their decisions

◮ Codewords can lose anchor status if they
conflict with too many other codewords

◮ Estimated error locations for codeword
(i, j) are denoted by Ei,j ⊂ {1, . . . , n}

Algorithm: (replaces line 6 in Alg. above)

1. If codeword (i, j) is frozen or BDD fails,
skip to next codeword, else go to step 2

2. For each error location e ∈ Ei,j, check if
bit flip is consistent with anchors. If not,
freeze (i, j) and skip to next codeword

3. Flip bits in Ei,j and make (i, j) anchor

4. Backtrack anchors with too many
conflicts: revert previously applied bit flips

Examples: (see Figure 1)
Preventing miscorrections: Codeword (i, j) = (3, 4) has
3 errors (black crosses). BDD miscorrects with E3,4 =
{10, 12} (red crosses). Assuming that (4, 4) is an anchor,
codeword (3, 4) is frozen and no bits are flipped.

Reverting miscorrections: Let codeword (1, 3) be a miscor-
rected anchor, E1,3 = {5, 7}. Assume that (i, j) = (2, 1).
The codeword (2, 1) has E2,1 = {3} and is frozen during
step 2. The next codeword (2, 2) has E2,2 = {3, 10}. The
bit flip at e = 3 is inconsistent with (1, 3), but this anchor
is already in conflict with (2, 1). The anchor is backtracked
in step 4 and all bits in E2,2 are flipped in step 3.

p
o
s.

1

p
o
s.

3

pos. 2

pos. 4

b

b

b

b

b

b

× × × ××

××× ××

1 2 3 4 5 6

1 2 3 4 5 6

1

2

3

4

5

6

1

2

3

4

5

6

Bk

Bk+1

Bk+2

Bk+3

Bk+4

Figure 1: Staircase window of size W = 5 with n = 12

Results (n = 256, t = 2, ℓ = 7, W = 8)

10−11

10−9

10−7

10−5

10−3

10−1

pre-FEC bit error rate

p
o
st
-F

E
C

b
it

e
rr
o
r
ra
te

0.8 0.9 1.0 1.1 1.2 1.3 1.4 · 10−2

bC bC bC bC bC bC bC bC

bC

bC

bC

bC

bC
bC bC

rS
rS

rS
rS

rS

rS

rS

rS

rS
rS rS rS rS

uT uT uT uT uT uT uT uT uT
uT

uT

uT

uT

uT

uT
uT uT

d
e
n
si
ty

e
v
o
lu
ti
o
n

error
floor

conventional

decoding

idealized

decoding

proposed

Conclusions

◮ Post-FEC performance of staircase codes significantly improved by
adopting a novel anchor-based decoding algorithm

◮ For BCH component codes with error-correction capability t = 2, net
coding gain improvements of around 0.4 dB at bit error rate 10−9

◮ Error-floor reduction by over an order of magnitute, giving virtually
miscorrection-free performance

References

[1] Justesen et al., “Error correcting coding for OTN,” IEEE Commun. Mag. 59, 70–75 (2010).

[2] Yu et al., “FPGA demonstration of stretched continuously interleaved BCH code with low error floor for

short-range optical transmission,” in Proc. Optical Fiber Communication Conf. (OFC) (San Diego, 2017)

[3] Smith et al., “Staircase codes: FEC for 100 Gb/s OTN,” J. Lightw. Technol. 30, 110–117 (2012).

[4] Häger et al., “Density evolution for deterministic generalized product codes on the binary erasure channel,”

IEEE Trans. Inf. Theory 63, 4357–4378 (2017).

[5] Jian et al., “Approaching capacity at high rates with iterative hard-decision decoding,” in “Proc. IEEE Int.

Symp. Information Theory (ISIT),” (Cambridge, 2012).

[6] Truhachev et al., “Decoding analysis accounting for mis-corrections for spatially-coupled split-component

codes,” in Proc. IEEE Int. Symp. Information Theory (ISIT) (Barcelona, Spain, 2016).

[7] J. Justesen, “Performance of product codes and related structures with iterated decoding,” IEEE

Trans. Commun. 59, 407–415 (2011).

[8] Holzbaur et al., “Improved decoding and error floor analysis of staircase codes,” arXiv:1704.01893 (2017).


