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Abstract Staircase Codes
We propose a novel decoding algorithm for staircase codes which can prevent Staircase codes: Let C be a component code of length n and dimension k.
or revert most undetected decoding errors, also known as miscorrections. The A staircase code is defined as the set of all matrix sequences B, € {0, 1}**¢,
algorithm significantly improves performance, while retaining a low-complexity k = 0,1,2,..., such that the rows in [B]_,,By] for all k& > 1 form valid
implementation suitable for high-speed optical transport networks (OTNs). codewords of C, where a = n/2 and By is the all-zero matrix.

Component codes: We use extended t-error-correcting BCH codes.

Conventional decoding: / iterations of BDD within a sliding window com-
prising W received blocks (matrices). Component codewords are identified by

Motivation a pair (¢,7), where i € {1,2,..., W — 1} is the position relative to the current
window (see Figure 1) and 7 € {1,2,...,a} enumerates codewords.
» Hard-decision forward error correction (FEC) offers dramatically reduced
complexity compared to soft-decision FEC. Applications include 1 k<« 0
regional /metro OTNs [1], optical data center interconnects 2], etc. » while true do
» Focus here: Staircase codes [3]—built from short component codes and 3 for(=1,2,...,¢ do
decoded via iterative bounded-distance decoding (BDD) 4 fori=W —1.W—-2....1do
» Problem: undetected decoding errors, or miscorrections, may arise during 5 for j=1,2,...,a do
BDD = additional errors are introduced (on top of transmission 6 L L apply BDD to component codeword (i, j)
errors) dur.lng. |.terat|ve decoding o | 7 | output decision for B and shift window
» Leads to significant performance degradation in practice [3], [5], [7] 8 | ki k4l

» Notoriously difficult to analyze theoretically [4], [6], [8]

Proposed Anchor-Based Decoding

Miscorrections: Let » = ¢ + e be a received . Algorithm: (replaces line 6 in Alg. above)

: . 0s. 2 C :
component codeword, i.e., ¢ € C, e € {0,1}". . ) 2p3 45 6 1. If codeword (¢, j) is frozen or BDD fails,
Applying BDD to r can result in ) skip to next codeword, else go to step 2

1) ¢ € C ifdylr,c) =wnle) <t 2 Bt 2. For each error location e € &; ;, check if
H , H — , — 5J
(2) ¢ €C ifwy(e)>tand dy(r,c) <t, g ’ ’ 1 " B bit flip is consistent with anchors. If not,
(3) FAIL otherwise 2 A s freeze (i, 7) and skip to next codeword
y 5 PpoOsS. . . . .
. . 3. Flip bits in &; ; and make (7, 5) anchor
where dy, wy are Hamming distance and weight. 6 bt 23456 J P " | (4, )
: . 1 4. Backtrack anchors with too many
Case (2) corresponds to a miscorrection; often _ _ _ .
: : : 2 conflicts: revert previously applied bit flips
ignored for theoretical analysis (referred to as B, ™
idealized decoding). 2, ) ) T T Examples: (see Figure 1)
A, . . . o
» Miscorrections lead to inconsistencies: two 5 PreVe”t'”(g m'sco”ec“o)”53 Codeword (z,7) = (3,4) has
3 errors (black crosses). BDD miscorrects with &34 =
6 3.4
compor?ent COd_ewordS thaJ_c protect the {10, 12} (red crosses). Assuming that (4,4) is an anchor,
same bit may disagree on its value / codeword (3,4) is frozen and no bits are flipped.
> Idea: make certain codewords anchors and B2 Reverting miscorrections: Let codeword (1, 3) be a miscor-
trust their decisions / " rected anchor, & 5 = {5, 7}. Assume that (i,j) = (2,1).
» Codewords can lose anchor status if they Bt . The codeword (2,1) has & = {3} and is frozen during
conflict with too many other codewords step 2. The next codeword (2, 2) has &5 = {3,10}. The
_ _ bit flip at e = 3 is inconsistent with (1, 3), but this anchor
» Estimated error locations for codeword ] _ _ _ . is already in conflict with (2, 1). The anchor is backtracked
(¢,7) are denoted by &; ; C {1,...,n} Figure 1: Staircase window of size W = 5 with n = 12 in step 4 and all bits in &, are flipped in step 3.

Results (n =256, t =2, { =7, W =8§) Conclusions

10~ — _ _ _ _ _ _ » Post-FEC performance of staircase codes significantly improved by
' ' ' ' ' ' : adopting a novel anchor-based decoding algorithm
A= = » For BCH component codes with error-correction capability ¢ = 2, net
10-3 | - coding gain improvements of around (.4 dB at bit error rate 107"
Q ' . I - » Error-floor reduction by over an order of magnitute, giving virtuall
= conventional | © y & siving y
S decoding I < miscorrection-free performance
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