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Abstract Code Construction and Analysis
We analyze deterministically constructed (i.e., non-ensemble-based) codes in Parameters:
the waterfall and error floor region. The analysis directly applies to several 7): binary symmetric L X L matrix, where L is the number of positions
forward error-correction (FEC) classes proposed for high-speed optical transport n: number of constraint nodes (CNs) in the Tanner graph

networks such as staircase [1| and braided codes |2, 4]. Code construction: Place n/L CNs at each position. Connect each CNs at

position ¢ to each CN at position j (through a variable node) if n; ; = 1.

Motivation Example: positions: | 2
e n={(1¢)
» Product codes: each row and column of a rectangular array is a o [, =2 — —
codeword in some component code (standardized in, e.g., ITU-T G.975). e =10 edges £ degree-2
» Recently, several classes of generalized product codes such as staircase row gy, Variable nodes

: _ codes codes product code
and braided codes have been proposed (very appealing due to syndrome

compression at high code rates = low complexity [1]).

» We propose a construction that recovers these codes as special cases. Density evolution [3]: Let p = ¢/n, ¢ > 0, and n — co. Then, BER ~

T 2 2 ; - A (0 (¢)
» Rigorous asymptotic density evolution analysis is possible which predicts pxnxT/|[n|[¢ where |[n||g is the number of 1sinn, x = (z,",...,2,’), and
the post-FEC bit error rate (BER) waterfall performance. x@@ = U, (% Z]LZI m’jxg.g_l)) with x§0> =1forie {1,2,...L}.

» We assume / iterations of idealized hard-decision bounded-distance
decoding over the binary symmetric channel with crossover probability p.

» Case study: comparison of staircase, braided, and half-braided codes. Error floor [1]: BERfioor & SminM p°™n/ B where parameters are defined below.

Here, Us¢(\) =1 — e ZE;&% denotes the Poisson tail probability.
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batch size B a’ =n2/4 3b° =n?/3 (30° — b)/2 = (n2 —n.)/6
code rate R ch/nc — 1= 09167 ch/nc — 1= 09167 Z(kc — 1)/(nc — 1) — 1 =0.9166
window decoder size WW / iterations /¢ 8 /8 6/ 8 6/ 16
decoding delay D 1,036, 800 1,036, 800 517,680
decoding schedule row/column alternations row/column alternations all component codes at once
minimum stall pattern size sy, (t+1)° =16 (t+1)° =16 (t+1)(t+2)/2 =10
N a 2a a 2b b\ \° b 3b 2b 2b b
stall pattern multiplicity M (:11) ((t+1) — <t+1)> ((t+1) — (t+1)) +2(.,4) ((t+1) - (t+1)) (i32) = (i42)
Results Conclusions
» Density evolution can be applied to several deterministic code classes
that are relevant for fiber-optical communications.
» [he analysis is useful for parameter tuning, optimization of window
decoding schedules, or the design of new codes.
ES » Staircase and braided codes perform similarly, while half-braided codes
aa can have better performance at a lower decoding delay.
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