
Density Evolution and Error Floor Analysis for
Staircase and Braided Codes

Christian Häger1, Henry D. Pfister2, Alexandre Graell i Amat1, and Fredrik Brännström1

1Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden 2Department of Electrical Engineering, Duke University, Durham, USA

Abstract

We analyze deterministically constructed (i.e., non-ensemble-based) codes in
the waterfall and error floor region. The analysis directly applies to several
forward error-correction (FEC) classes proposed for high-speed optical transport
networks such as staircase [1] and braided codes [2, 4].

Motivation

◮ Product codes: each row and column of a rectangular array is a
codeword in some component code (standardized in, e.g., ITU-T G.975).

◮ Recently, several classes of generalized product codes such as staircase
and braided codes have been proposed (very appealing due to syndrome
compression at high code rates =⇒ low complexity [1]).

◮ We propose a construction that recovers these codes as special cases.

◮ Rigorous asymptotic density evolution analysis is possible which predicts
the post-FEC bit error rate (BER) waterfall performance.

◮ We assume ℓ iterations of idealized hard-decision bounded-distance
decoding over the binary symmetric channel with crossover probability p.

◮ Case study: comparison of staircase, braided, and half-braided codes.

Code Construction and Analysis

Parameters:
η: binary symmetric L × L matrix, where L is the number of positions
n: number of constraint nodes (CNs) in the Tanner graph

Code construction: Place n/L CNs at each position. Connect each CNs at
position i to each CN at position j (through a variable node) if ηi,j = 1.
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Density evolution [3]: Let p = c/n, c > 0, and n → ∞. Then, BER ≈
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with x
(0)
i = 1 for i ∈ {1, 2, . . . L}.

Here, Ψ≥t(λ) = 1 − e−λ ∑t−1
i=0

λi

i! denotes the Poisson tail probability.

Error floor [1]: BERfloor ≈ sminMpsmin/B where parameters are defined below.

We assume a BCH component code with
length nc = 720, dimension kc = 690, and
error-correcting capability t = 3.

Structure of η for L = 6:
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batch size B a2 = n2
c/4 3b2 = n2

c/3 (3b2 − b)/2 = (n2
c − nc)/6

code rate R 2kc/nc − 1 = 0.9167 2kc/nc − 1 = 0.9167 2(kc − 1)/(nc − 1) − 1 = 0.9166

window decoder size W / iterations ℓ 8 / 8 6 / 8 6 / 16

decoding delay D 1, 036, 800 1, 036, 800 517, 680

decoding schedule row/column alternations row/column alternations all component codes at once

minimum stall pattern size smin (t + 1)2 = 16 (t + 1)2 = 16 (t + 1)(t + 2)/2 = 10

stall pattern multiplicity M
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Inlet figure: nc = 600, kc = 580, t = 2, W = 5, ℓ = 10
Brown line: nc = 960, kc = 920, t = 4 =⇒ D = 920, 640, smin = 15

Conclusions

◮ Density evolution can be applied to several deterministic code classes
that are relevant for fiber-optical communications.

◮ The analysis is useful for parameter tuning, optimization of window
decoding schedules, or the design of new codes.

◮ Staircase and braided codes perform similarly, while half-braided codes
can have better performance at a lower decoding delay.
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