Density Evolution and Error Floor Analysis for Staircase and Braided Codes

CHALMERS

Christian Häger ${ }^{1}$, Henry D. Pfister ${ }^{2}$, Alexandre Graell i Amat ${ }^{1}$, and Fredrik Brännström ${ }^{1}$
${ }^{1}$ Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden ${ }^{2}$ Department of Electrical Engineering, Duke University, Durham, USA
FIDRCE

Abstract

We analyze deterministically constructed (i.e., non-ensemble-based) codes in the waterfall and error floor region. The analysis directly applies to several forward error-correction (FEC) classes proposed for high-speed optical transport networks such as staircase [1] and braided codes [2, 4]

Motivation

- Product codes: each row and column of a rectangular array is a codeword in some component code (standardized in, e.g., ITU-T G.975).
- Recently, several classes of generalized product codes such as staircase and braided codes have been proposed (very appealing due to syndrome compression at high code rates \Longrightarrow low complexity [1]).
- We propose a construction that recovers these codes as special cases.
- Rigorous asymptotic density evolution analysis is possible which predicts the post-FEC bit error rate (BER) waterfall performance.
- We assume ℓ iterations of idealized hard-decision bounded-distance decoding over the binary symmetric channel with crossover probability p.
- Case study: comparison of staircase, braided, and half-braided codes.

Code Construction and Analysis

Parameters:

$\boldsymbol{\eta}$: binary symmetric $L \times L$ matrix, where L is the number of positions n : number of constraint nodes (CNs) in the Tanner graph

Code construction: Place n / L CNs at each position. Connect each CNs at position i to each CN at position j (through a variable node) if $\eta_{i, j}=1$.

Example:

- $\boldsymbol{\eta}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- $L=2$
- $n=10$

product code

Density evolution [3]: Let $p=c / n, c>0$, and $n \rightarrow \infty$. Then, BER \approx $p \mathbf{x} \boldsymbol{\eta} \mathbf{x}^{\boldsymbol{\top}} /\|\boldsymbol{\eta}\|_{\mathrm{F}}^{2}$ where $\|\boldsymbol{\eta}\|_{\mathrm{F}}^{2}$ is the number of 1 s in $\boldsymbol{\eta}, \mathbf{x} \triangleq\left(x_{1}^{(\ell)}, \ldots, x_{L}^{(\ell)}\right)$, and

$$
x_{i}^{(\ell)}=\Psi_{\geq \mathrm{t}}\left(\frac{c}{L} \sum_{j=1}^{L} \eta_{i, j} x_{j}^{(\ell-1)}\right) \quad \text { with } x_{i}^{(0)}=1 \text { for } i \in\{1,2, \ldots L\} .
$$

Here, $\Psi_{\geq \mathrm{t}}(\lambda)=1-e^{-\lambda} \sum_{i=0}^{\mathrm{t}-1} \frac{\lambda^{i}}{i!}$ denotes the Poisson tail probability.
Error floor [1]: $\mathrm{BER}_{\text {floor }} \approx s_{\text {min }} M p^{s_{\text {min }}} / B$ where parameters are defined below.

Staircase Codes
Braided Codes
Half-Braided Codes

We assume a BCH component code with length $n_{\mathrm{c}}=720$, dimension $k_{\mathrm{c}}=690$, and error-correcting capability $\mathrm{t}=3$.

Structure of $\boldsymbol{\eta}$ for $L=6$:

Structure of $\boldsymbol{\eta}$ for $L=6$:		
staircase	braided	half-braided
$\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$	$\left(\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & \\ 1 & 0 & 1 & 0 & 0 & \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & \end{array}\right)$	$\left(\begin{array}{lllllll}1 & 1 & 0 & 0 & 0 & \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1\end{array}\right)$

batch size B code rate R
window decoder size W / iterations ℓ decoding delay D decoding schedule minimum stall pattern size $s_{\text {min }}$ stall pattern multiplicity M

$$
a^{2}=n_{\mathrm{c}}^{2} / 4
$$

$$
2 k_{\mathrm{c}} / n_{\mathrm{c}}-1=0.9167
$$

$$
8 / 8
$$

$$
1,036,800
$$

row/column alternations
$(\mathrm{t}+1)^{2}=16$
$\binom{a}{\mathrm{t}+1}\left(\binom{2 a}{\mathrm{t}+1}-\binom{a}{\mathrm{t}+1}\right)$

$3 b^{2}=n_{\mathrm{c}}^{2} / 3$
$2 k_{\mathrm{c}} / n_{\mathrm{c}}-1=0.9167$
$6 / 8$
1, 036, 800
row/column alternations
$(\mathrm{t}+1)^{2}=16$
$\left(\binom{2 b}{\mathrm{t}+1}-\binom{b}{\mathrm{t}+1}\right)^{2}+2\binom{b}{\mathrm{t}+1}\left(\binom{3 b}{\mathrm{t}+1}-\binom{2 b}{\mathrm{t}+1}\right)$

$\left(3 b^{2}-b\right) / 2=\left(n_{\mathrm{c}}^{2}-n_{\mathrm{c}}\right) / 6$
$2\left(k_{\mathrm{c}}-1\right) /\left(n_{\mathrm{c}}-1\right)-1=0.9166$
$6 / 16$
517, 680
all component codes at once
$(\mathrm{t}+1)(\mathrm{t}+2) / 2=10$
$\binom{2 b}{t+2}-\binom{b}{t+2}$

Results

Inlet figure: $n_{\mathrm{c}}=600, k_{\mathrm{c}}=580, \mathrm{t}=2, W=5, \ell=10$
Brown line: $n_{\mathrm{c}}=960, k_{\mathrm{c}}=920, \mathrm{t}=4 \Longrightarrow D=920,640, s_{\text {min }}=15$

Conclusions

- Density evolution can be applied to several deterministic code classes that are relevant for fiber-optical communications.
- The analysis is useful for parameter tuning, optimization of window decoding schedules, or the design of new codes.
- Staircase and braided codes perform similarly, while half-braided codes can have better performance at a lower decoding delay.

References

[1] B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang, and J. Lodge, "Staircase codes: FEC for $100 \mathrm{~Gb} / \mathrm{s}$ OTN," J. Lightw. Technol. 30, 110-117 (2012).
[2] Y.-Y. Jian, H. D. Pfister, K. R. Narayanan, R. Rao, and R. Mazahreh, "Iterative hard-decision decoding of braided BCH codes for high-speed optical communication," in "Proc. IEEE Glob. Communication Conf. (GLOBECOM)," (Atlanta, 2014).
[3] C. Häger, H. D. Pfister, A. Graell i Amat, F. Brännström, "Density evolution for deterministic generalized product codes on the binary erasure channel," submitted to IEEE Trans. Inf. Theory, http://arxiv.org/abs/1512. 00433 (2015).
[4] A. J. Feltström, D. Truhachev, M. Lentmaier, and K. S. Zigangirov, "Braided block codes," IEEE Trans. Inf. Theory 55, 2640-2658 (2009).

