Density Evolution and Error Floor Analysis for Staircase and Braided Codes

Christian Häger¹, Henry D. Pfister², Alexandre Graell i Amat¹, and Fredrik Brännström¹ 1 Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden 2 Department of Electrical Engineering, Duke University, Durham, USA

CHALMERS

FIRCE

Abstract

We analyze deterministically constructed (i.e., non-ensemble-based) codes in the waterfall and error floor region. The analysis directly applies to several forward error-correction (FEC) classes proposed for high-speed optical transport networks such as staircase [1] and braided codes [2, 4].

Motivation

- Product codes: each row and column of a rectangular array is a codeword in some component code (standardized in, e.g., ITU-T G.975).
- ► Recently, several classes of generalized product codes such as staircase and braided codes have been proposed (very appealing due to syndrome compression at high code rates \implies low complexity [1]).
- ► We propose a construction that recovers these codes as special cases.

Code Construction and Analysis

Parameters:

 η : binary symmetric $L \times L$ matrix, where L is the number of positions *n*: number of constraint nodes (CNs) in the Tanner graph

Code construction: Place n/L CNs at each position. Connect each CNs at position i to each CN at position j (through a variable node) if $\eta_{i,j} = 1$.

Density evolution [3]: Let p = c/n, c > 0, and $n \to \infty$. Then, BER \approx $p\mathbf{x}\boldsymbol{\eta}\mathbf{x}^{\mathsf{T}}/\|\boldsymbol{\eta}\|_{\mathsf{F}}^2$ where $\|\boldsymbol{\eta}\|_{\mathsf{F}}^2$ is the number of 1s in $\boldsymbol{\eta}$, $\mathbf{x} \triangleq (x_1^{(\ell)}, \dots, x_L^{(\ell)})$, and $x_i^{(\ell)} = \Psi_{\geq t} \left(\frac{c}{L} \sum_{j=1}^L \eta_{i,j} x_j^{(\ell-1)} \right) \qquad \text{with } x_i^{(0)} = 1 \text{ for } i \in \{1, 2, \dots L\}.$ Here, $\Psi_{>t}(\lambda) = 1 - e^{-\lambda} \sum_{i=0}^{t-1} \frac{\lambda^i}{i!}$ denotes the Poisson tail probability. **Error floor [1]:** BER_{floor} $\approx s_{\min}Mp^{s_{\min}}/B$ where parameters are defined below.

- Rigorous asymptotic density evolution analysis is possible which predicts the post-FEC bit error rate (BER) waterfall performance.
- We assume ℓ iterations of idealized hard-decision bounded-distance decoding over the binary symmetric channel with crossover probability p.
- Case study: comparison of staircase, braided, and half-braided codes.

Braided Codes

Half-Braided Codes

We assume a BCH component code with length $n_{\rm c} = 720$, dimension $k_{\rm c} = 690$, and error-correcting capability t = 3.

Structure of η for $L = 6$: staircase braided half-braided $\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$	3 $a \int x + x + x + x + x + x + x + x + x + x$	$1 \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$1 \begin{array}{c ccccccccccccccccccccccccccccccccccc$
batch size B	$a^2=n_{ m c}^2/4$	$3b^2 = n_{\rm c}^2/3$	$(3b^2 - b)/2 = (n_{\rm c}^2 - n_{\rm c})/6$
code rate R	$2k_{\rm c}/n_{\rm c} - 1 = 0.9167$	$2k_{\rm c}/n_{\rm c} - 1 = 0.9167$	$2(k_{\rm c}-1)/(n_{\rm c}-1) - 1 = 0.9166$
window decoder size W / iterations ℓ	8 / 8	6 / 8	6 / 16
decoding delay D	1,036,800	1,036,800	517,680
decoding schedule	row/column alternations	row/column alternations	all component codes at once
minimum stall pattern size s_{\min}	$(t+1)^2 = 16$	$(t+1)^2 = 16$	(t+1)(t+2)/2 = 10
stall pattern multiplicity M	$\binom{a}{t+1}\left(\binom{2a}{t+1}-\binom{a}{t+1}\right)$	$\left(\binom{2b}{t+1} - \binom{b}{t+1}\right)^2 + 2\binom{b}{t+1} \left(\binom{3b}{t+1} - \binom{2b}{t+1}\right)$	$\binom{2b}{t+2} - \binom{b}{t+2}$

batch

Staircase Codes

2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

Results

Conclusions

- Density evolution can be applied to several deterministic code classes that are relevant for fiber-optical communications.
- ► The analysis is useful for parameter tuning, optimization of window decoding schedules, or the design of new codes.
- Staircase and braided codes perform similarly, while half-braided codes can have better performance at a lower decoding delay.

References

- [1] B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang, and J. Lodge, "Staircase codes: FEC for 100 Gb/s OTN," J. Lightw. Technol. **30**, 110–117 (2012).
- [2] Y.-Y. Jian, H. D. Pfister, K. R. Narayanan, R. Rao, and R. Mazahreh, "Iterative hard-decision decoding of braided BCH codes for high-speed optical communication," in "Proc. IEEE Glob. Communication Conf. (GLOBECOM)," (Atlanta, 2014).
- C. Häger, H. D. Pfister, A. Graell i Amat, F. Brännström, "Density evolution for [3] deterministic generalized product codes on the binary erasure channel," submitted to IEEE Trans. Inf. Theory, http://arxiv.org/abs/1512.00433 (2015).
- [4] A. J. Feltström, D. Truhachev, M. Lentmaier, and K. S. Zigangirov, "Braided block

