Optimized Bit Mappings for Spatially Coupled LDPC Codes over Parallel Binary Erasure Channels

Christian Häger¹, Alexandre Graell i Amat¹, Alex Alvarado², Fredrik Brännström¹, and Erik Agrell¹

¹Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden ²Department of Electronic and Electrical Engineering, University College London, London, UK

Abstract

In many practical scenarios, one binary encoder/decoder pair is used to communicate over a set of parallel channels. We study spatially coupled low-density parity check (LDPC) codes over parallel binary erasure channels (BECs) and optimize the bit mapper which determines how the coded bits are allocated to the parallel channels.

System Model

Conclusions

- 1. Decoding threshold can be improved over a uniform random bit mapper, or, alternatively, the spatial chain length can be reduced.
- 2. For circular ensembles, different channel qualities can be exploited to obtain wave-like decoding behavior similar to terminated ensembles.

Spatially Coupled LDPC Codes

Example: Tanner graph of the two-sided $(d_{v} = 3, d_{r} = 6, L = 7, w = 2)$ ensemble

Bit Mapper

- Variable nodes (code bits) at different spatial positions belong to different equivalence classes
- ▶ Assignment of classes to channels via matrix $\mathbf{A} = [a_{i,j}] \in \mathbb{R}^{m \times L}$, where $a_{i,j} \triangleq$ fraction of VNs from position j to be sent over *i*th BEC

Example:
$$\mathbf{A} = \begin{pmatrix} 1.0 & 0.0 & 0.5 & 0.75 & 0.25 & 1.0 & 0.0 \\ 0.0 & 1.0 & 0.5 & 0.25 & 0.75 & 0.0 & 1.0 \end{pmatrix}$$

- Baseline bit mapper with uniform assignment $a_{i,j} = 1/m$, $\forall i, j$
- Set of valid assignment matrices $\mathcal{A}^{m \times L}$: columns sum to 1, rows sum to L/m
- Optimized bit mapper $\mathbf{A}_{opt} = \operatorname{argmax}_{\mathbf{A} \in \mathcal{A}^{m \times L}} \bar{\varepsilon}^*(\mathbf{A})$, via iterative approach

CHALMERS

Optimized Bit Mappings for Spatially Coupled LDPC Codes over Parallel Binary Erasure Channels

Christian Häger¹, Alexandre Graell i Amat¹, Alex Alvarado², Fredrik Brännström¹, and Erik Agrell¹

¹Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden ²Department of Electronic and Electrical Engineering, University College London, London, UK

Abstract

In many practical scenarios, one binary encoder/decoder pair is used to communicate over a set of parallel channels. We study spatially coupled low-density parity check (LDPC) codes over parallel binary erasure channels (BECs) and optimize the bit mapper which determines how the coded bits are allocated to the parallel channels.

Conclusions

- 1. Decoding threshold can be improved over a uniform random bit mapper, or, alternatively, the spatial chain length can be reduced.
- 2. For circular ensembles, different channel qualities can be exploited to obtain wave-like decoding behavior similar to terminated ensembles.

Results: Two-Sided (4, 8, L, w) Ensembles

Results: Circular (4, 8, L, w) **Ensembles**

erasure prob. for baseline bit mapper, L = 20, w = 2

erasure prob. for optimized bit mapper, L = 20, w = 2

CHALMERS