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Abstract

In this thesis the performance of a turbo equalization scheme is analyzed. First the BCJR
algorithm [1] is presented and applied in both the decoder and equalizer. With these two
modules a receiver that employs successive equalization and decoding is established. It is
shown that the assumptions made to connect the (taken by themselves optimal) modules lead
to suboptimal performance. With the knowledge that a discrete intersymbol interference (ISI)
channel can be regarded as a rate-1 convolutional encoder a new receiver structure is derived
in the same fashion as an iterative decoder would decode a serially concatenated convolutional
code [2]. The major shortcoming of this new receiver is a lower bound of the bit error rate
which can be overcome by precoding in order to make the ISI channel recursive [3]. This
receiver structure allows decoding performance close to the information theoretical limit of an
ISI channel. The outer convolutional encoder is then replaced by a parallel concatenated con-
volutional encoder in order to see if the additional complexity caused by yet another BCJR
module and an extra “inner” loop necessary to iteratively decode the outer code can yield
performance improvements.
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Chapter 1

Introduction

When transmitting digital data wirelessly we commonly face two problems. Firstly amplifiers
have to be installed in order to access the usually weak radio signal at the receiver. An
amplifier does not only amplify the signal but also adds noise, thus bit errors might occur as
a consequence. Secondly reflections cause multipath propagation and the received signal may
not be the transmitted one but rather a superposition of time-shifted and weighted versions
of it.
To counter the first problem information bits are encoded by means of a channel encoder for
forward error correction. For the second problem an equalizer in the receiver tries to recover
the transmitted signal with a certain reliability depending on the noise power. Equalization
and channel decoding are often implemented separately, i.e. first an equalizer recovers the
transmitted signal and then a channel decoder obtains an estimate of the information bit
sequence.
In [4] a method is presented to decode a bit sequence which is protected by two independent
error-correcting codes. Two decoders are used (one for each code) which are interchanging in-
formation with each other and are operated in an iterative manner. This method is referred to
as the turbo decoding principle and offers error correcting performance close to the theoretical
boundaries postulated by Shannon [5].
A multipath channel can also be regarded as an encoder so from a more abstract point of
view an encoded information bit sequence transmitted over a multipath channel is then also
protected by two independent codes – the one employed for error-correction and the code of
the channel. Therefore the above mentioned turbo principle can be applied to the problem
of equalization and decoding. This so called turbo equalization scheme was first proposed in
[6]. The fact that it performed better than the classical approach of separate equalization and
decoding inspired many people to further improve the original scheme [7, 2, 8] and especially
the use of a precoder [9, 3] lets this scheme perform very close to the theoretical limits.
This thesis is structured as follows. The basic elements and algorithms that are necessary to
implement and understand a digital transmission line in which multipath propagation occurs
are presented in Chapter 2. In Chapter 3 the general turbo principle is introduced. Then this
principle is applied to the problem of equalization and decoding. The resulting turbo equaliza-
tion scheme is tested and analyzed through simulation. In Chapter 4 a parallel concatenated
convolutional code which is commonly known as a turbo code is employed for error-correction
as proposed in [10]. The performance of this scheme is compared to the conventional turbo
equalization scheme. Finally in Chapter 5 the results are summarized.
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Chapter 2

Presentation of the Transmission Line

2.1 Overview

A digital transmission line consists of a transmitter, a channel and a receiver. In a nutshell:
The transmitter maps digital data to channel symbols which are sampled and modulated in
order to get a continuous-time signal. This signal is distorted by the channel. The receiver
demodulates and samples the distorted signal and then tries to provide an estimate of the
original digital data. The whole process of sampling, modulating and demodulating is a
very complex issue for itself and we refer to standard literature for deeper analysis [11, 12].
Nonetheless it is possible to simplify this transmission line significantly which will be described
in this section.
In the introduction a multipath propagation channel is mentioned. A situation giving rise to
multipath propagation is depicted in Figure 2.1. The signal s(t) is sent but due to reflections
and attenuations

g(t) = a0s(t− τ0) + a1s(t− τ1) (2.1)

is received, where a0 and a1 are attenuation factors and τ0 and τ1 are the transmission times
for the two different paths. In this thesis we consider attenuation factors and delays which are
independent of the time. Thus the channel can be modeled by a linear time invariant system
where the impulse response of the system is described by

h(t) = a0δ(t− τ0) + a1δ(t− τ1), (2.2)

i.e. applying convolution s(t) ∗ h(t) results in the received signal g(t). This is only a short

s(t)

g(t)

a0, τ0a1, τ1

Figure 2.1: Typical multipath propagation for wireless transmission.
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Figure 2.2: A general digital transmission line and the equivalent discrete-time channel replacing
the modulator, continuous-time channel and demodulator. Note that in this model the
amplifier (and thus the additive noise) is treated as part of the channel.

example and in fact a wireless communication scheme is not the only case where such distor-
tions take place. Transmissions over optical wires where refractions and reflexions appear are
another example. All of these channels are said to be frequency selective (transforming h(t) in
the above example into frequency domain and taking its absolute value results in a frequency
dependency) and they all cause intersymbol interference. That means in the receiver a sam-
ple value corresponds not only to one transmitted channel symbol but to an overlapping of
successive channel symbols.
In [11] it is shown that the whole cascade of modulator, continuous time frequency selective
channel and demodulator can be replaced by a simple equivalent discrete-time channel as
pointed out in Figure 2.2 (for a detailed derivation and necessary assumptions see [11, Chapter
10]). A very important requirement is that the channel is time invariant, i.e. its properties
are not changing with time. The usually very complex steps which lead from the sequence
of channel symbols x to the demodulated sample values y can then be put into the simple
equation

yk = h0xk + h1xk−1 + · · ·+ hLxk−L + nk (2.3)

where h0, . . . , hL represent the tap gains of the discrete-time intersymbol interference channel
(ISI channel), L is the length or memory of the channel and nk is a noise sample. This equation
is further analyzed later in this chapter.
The resulting transmission line used in this thesis is shown in Figure 2.3. In the remainder of
this chapter every box in this picture will be described in detail.

6



Chapter 2 Presentation of the Transmission Line

u
Encoder

c
π

c̃
Mapper

x
ISI Channel

x̃

n

y
Receiver

û

Figure 2.3: Discrete-time model of the transmission line used in this thesis.

2.2 Source

The source generates an information vector u = (u1, . . . , uk) containing the symbols 0 and 1
with equal probability. That means u is a binary vector of length k and we write u ∈ Fk2,
where F2 = {0, 1}.

2.3 Encoder

Encoder
u c

The channel encoder uniquely maps the information vector u to a codeword vector c =
(c1, . . . , cn) ∈ Fn2 of length n, where n ≥ k. We define R = k/n to be the code rate. The
code C is the set of all 2k codeword vectors which can occur when encoding all 2k possible
information vectors for a given encoder.
In this paper convolutional encoders are used which can be represented by a sequential circuit
consisting of M delay elements. In order to keep the notation as simple as possible those
circuits will be limited to one input and two outputs. The rate R is then fixed to 1/2 and M
is called the memory or the constraint length of the encoder.
In order to emphasize that at any given time i the ith element of u is mapped to two code
bits, c can also be written as

u = (u1, . . . , uk) 7→ c = (c1, . . . , ck) = ((c
(1)
1 , c

(2)
1 ), . . . , (c

(1)
k , c

(2)
k )). (2.4)

The upper number refers to the corresponding output of the encoder. The sequence which
corresponds to the first and second output will be denoted as c(1) = (c

(1)
1 , . . . , c

(1)
k ) and c(2) =

(c
(2)
1 , . . . , c

(2)
k ), respectively.

Figure 2.4 shows two types of convolutional encoders. The first one (a) is a non systematic
convolutional (NSC) encoder and the second one (b) is a recursive systematic convolutional
(RSC) encoder generating the same code C. A rate-1/2 convolutional encoder is systematic

when ui 7→ (ui, c
(2)
i ) or ui 7→ (c

(1)
i , ui) for i = 1, . . . , k. That means the (input) information bit

of the encoder appears also as part of the (output) vector ci for each i.
The encoder taps q0, . . . , qM and p0, . . . , pM can only take values 0 and 1. In Figure 2.5 an
example NSC encoder with parameters M = 2, q0 = 1, q1 = 0, q2 = 1, p0 = 1, p1 = 1 and
p2 = 1 is shown.
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(b) RSC encoder

Figure 2.4: General structure of convolutional encoders with rate 1/2. Note that modulo-2 opera-
tors are used.

D Dbui

c
(1)
i

c
(2)
i

Figure 2.5: Sequential circuit representation of the (5,7) NSC encoder.

It is common to declare the used encoder in octal notation. This can be done by simply
interpreting the taps as a binary number and writing them as an octal number. For the
example encoder in Figure 2.5 this leads to (q0q1q2)2 = (101)2 = 58 and (p0p1p2) = (111)2 = 78.
So Figure 2.5 is a graphical representation of the (5, 7) NSC encoder.
We use the convention that for i < 1 all delay elements contain zeros. The encoder is said to
be initialized in the all-zero state.
Leaving the delay elements in an undetermined state after encoding is obstructive when de-
coding the received code vector [13]. Therefore the codeword vector is terminated by adding
a sequence of M additional bits to the information vector, so that after having encoded all
k +M bits the encoder is left in a determined state. In this thesis the encoder is forced back
to the all-zero state. When the encoder is not recursive M zeros are added to the information
vector. For recursive encoders the corresponding tail-bits can be stored in a look up table [13].
Termination results in an overall rate loss because now for k information bits 2(k +M) code
bits have to be sent. This loss can be neglected if k is large. To keep the notation simple we
further assume that u ∈ Fk2 already contains the tail-bits as actual information.
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Chapter 2 Presentation of the Transmission Line

2.3.1 State Diagram and Trellis Representation

A convolutional encoder with M delay elements can also be regarded as a finite state machine
having 2M states S = {0, . . . , 2M−1}. The current state of the encoder is determined by
“reading” the content of the delay elements as a dual number. So if the first delay element
of the example encoder contains a 1 and the second one contains a 0 the encoder is in state
(10)2 = 2.

The output of the encoder at time i, i.e. (c
(1)
i , c

(2)
i ), is determined by the current state σi and

the current input bit ui. After generating the output, the state machine enters the next state
σi+1. Figure 2.6 shows the state machine of the (5,7) NSC encoder.

0

12

3

1/11

1/10
0/10

0/11

0/01

1/00

0/00

1/01

Figure 2.6: State machine of the (5,7) NSC encoder.

The transition labels show the input bit and the two output bits for a particular state tran-
sition. A codeword corresponds to a specific path in the state diagram. Starting in the state
σ0 = 0 the next state σ1 is entered according to the input bit and two output code bits for
that state transition are generated. This is continued until the final state σk is reached (which
will be σk = 0 due to termination).

A trellis is a directed graph visualizing all possible paths in the state diagram that can occur
during encoding. For an example see Figure 2.7 which is the trellis representation of the (5,7)
NSC encoder when k = 6 information bits are encoded. The bold path corresponds to the
information vector u = (1, 0, 0, 1, 0, 0). A dashed line represents a 0 as information bit.
When talking about trellises it is helpful to introduce some conventions for the notation. A
trellis consists of a set of vertices V and a set of edges E . Every edge ε ∈ E connects two
vertices ν ∈ V . If we define the direction of the trellis from left to right, the (left) start vertex
is denoted by A(ε) and the (right) end vertex by Ω(ε). Ein(ν) is the set of all edges that end
in ν and Eout(ν) is the set of all edges that originate from ν, i.e.

Ein(ν) = {ε ∈ E : Ω(ε) = ν} and Eout(ν) = {ε ∈ E : A(ε) = ν}. (2.5)
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Figure 2.7: Example trellis for the (5,7) NSC encoder when 6 information bits are encoded.

It is helpful to decompose V and E into the disjoint subsets

V = V1 ∪ V2 ∪ · · · ∪ Vk+1 and (2.6)

E = E1 ∪ E2 ∪ · · · ∪ Ek (2.7)

such that every edge ε ∈ Ei connects a vertex ν ∈ Vi to a vertex ν ∈ Vi+1. In Figure 2.7 those
sets are already depicted as an example.
A vertex ν ∈ Vi represents one possible state the encoder can be in when ui is encoded. An
edge ε is a tuple (si, si+1, λ(ε), µ1(ε), µ2(ε)), where si is the state of the vertex it originates
from and si+1 is the state of the vertex it ends in. λ(ε) is the input information bit that
causes the state transition si → si+1. µ1(ε) and µ2(ε) refer to the two output code bits for
that transition. λ(ε) is visualized in trellis diagrams with a dashed line if a λ(ε) = 0 and with
a solid line if λ(ε) = 1. Figure 2.8 illustrates this formalism.

Eout(ν)Ein(ν)
ǫ = (1, 0, 0, 1, 1)

ǫ = (2, 3, 1, 1, 0)

0

1

2

3

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

ν

A(ǫ) Ω(ǫ)ǫ

. . .. . . . . .

b

b

b

b

b

b

b

b

0/00

1/11

0/0
1

1/10

0/1
1

1/00

0/
10

1/01

Figure 2.8: Visualization of the trellis notation used in this thesis. Note that an edge ε contains
five pieces of information: starting and ending state, one input and two output bits for
a particular state transition.
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Chapter 2 Presentation of the Transmission Line

A sequential circuit, a state diagram and a trellis all describe the same convolutional encoder
only from different points of view. The state diagram is the preliminary stage for drawing the
trellis and, as will become clear when introducing the receiver, the trellis diagram is the key
for efficient decoding.

2.4 Interleaver

π π -1
c c̃ c

An interleaver rearranges the order of the bits in the codeword vector c. The operation is
reversed by a deinterleaver.
When burst errors occur during transmission, i.e. few consecutive received channel symbols are
very noisy, restoring the old bit order (deinterleaving) helps to spread out these errors. This is
necessary because decoding is impaired when consecutive symbols are heavily distorted. Thus
the purpose of an interleaver is to distribute few consecutive extreme noisy channel symbols
equally throughout the codeword vector.
The interleaver has another interesting effect. Imagine that consecutive noisy symbols are
somehow correlated and that the correlation decreases the further these correlated symbols
are apart. By scrambling the order of the symbols it is possible to decrease the correlation
between adjacent symbols after deinterleaving. Why this is helpful in the receiver will become
obvious later.

Several different types of interleavers exist and in fact interleaver design is a complex issue for
itself. Nonetheless for this thesis simple random interleavers (i.e. a device that takes each ci
in c and randomly assigns it to a new position in c̃) are used.

2.5 Mapper

Mapper
c̃ x

A symbol mapper converts the binary elements of the interleaved codeword vector c̃ to a
subspace of the Euclidean vector space C for subsequent sampling and modulation. For
convenience we are assuming binary phase shift keying (BPSK modulation) so that the symbol
mapper only performs the operation

xi = (−1)c̃i . (2.8)

The subspace of C is thus {−1, 1}.
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Chapter 2 Presentation of the Transmission Line

2.6 Discrete ISI Channel

ISI Channel
x x̃

As mentioned in the beginning of this chapter the discrete channel we are going to use is
described by

x̃i =
L∑
j=0

hj ·xi−j , (2.9)

where L is the memory of the channel and h = (h0, . . . , hL) are the channel taps. A graphical
representation of this equation can be seen in Figure 2.9.

D D D

h0 h1 h2 hL

bxi

x̃i

. . .

. . .

Figure 2.9: Representation of the discrete intersymbol interference channel as a sequential circuit.

The resemblance to an NRC encoder is obvious. The main differences are:

• The channel has only one output x̃i.

• The input vector x consists of the symbols -1 and +1. Modulo-2 operators are replaced
by common addition operators.

• The channel taps h = (h0, . . . , hL) are real numbers. (Assuming normalized signal
energy Es = 1 the squared taps have to add up to 1.)

• The input alphabet {−1,+1} is a subset of the output alphabet.

The last three points all refer to the fact that the channel does not operate on a finite field
(F2) as it was the case for the channel encoder.
Considering the differences mentioned above the graphical representation in Figure 2.9 still
allows us to draw a state diagram and a trellis graph in a similar way as for the encoder. For
the example channel h1 = (0.4097, 0.8150, 0.4097) with L = 2 which is shown in Figure 2.10
the corresponding state machine and a full trellis transition are depicted in Figure 2.11.
When determining the current state of the channel the symbols -1 or +1 which are stored
in the delay elements are mapped back to 0 and 1 before the dual conversion to a decimal
number. It can be seen that the state machine is the same for a channel and a (non-recursive)
encoder having the same memory M = L. Only the transition labels are different because of
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D D
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bxi

x̃i

Figure 2.10: Graphical representation of the example channel h1.
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Figure 2.11: State machine and a full trellis transition for the example channel.

different input and output alphabets. The output alphabet comprises all values of x̃i that can
occur during transmission. For channel h1 the output alphabet is

x̃i ∈ {±0.0044, ±0.8150, ±1.6344}. (2.10)

To calculate the alphabet it is assumed that in (2.9) all xi are 1 for i < 1. This is equivalent
to the initialization in the all-zero state for an encoder. Initialization for the ISI channel can
be achieved by sending L times +1 prior to the real transmission.
For the trellis graph nothing changes except that an edge ε is now a tuple (si, si+1, λ(ε), µ(ε))
containing only four pieces of information instead of five because only one output has to be
considered. λ(ε) is visualized by a dashed line when λ(ε) = +1 and by a solid line when
λ(ε) = −1.

2.6.1 Channel Capacity

In order to evaluate the different receivers in this thesis the bit error rate for various signal
to noise ratios Es/N0 is simulated where Es = 1 is the normalized signal energy and N0 is
the single sided noise power spectrum density [13]. For an AWGN channel (see Section 2.7) a
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Figure 2.12: Uniform-input information rates for the channels in Table 2.1.

signal to noise ratio corresponds to a certain channel capacity

C =
1

2
log2

(
1 +

Es
N0

)
. (2.11)

Information theory then postulates that as long as for the code rate R < C holds it is possible
to make the bit error rate arbitrarily small [13]. In our case the code rate is fixed to 1/2,
thus we would like to calculate a minimum signal to noise ratio for which near error-free
transmission is theoretically possible and then see how the receiver performs above this limit.
For R = C = 1/2 and an AWGN channel this limit is at Es/N0 = −3 dB. Unfortunately
it is not possible to calculate such limits for ISI channels. Nonetheless in [14] a method to
calculate the so called uniform-input information rate for such channels is presented. It is
shown that this rate coincides with a lower bound of the channel capacity of ISI channels for
the case of small memory L. We applied this method to the ISI channels that will be used
in the simulations. In Figure 2.12 the uniform-input information rates of these channels are
plotted. A summary of the resulting signal to noise ratio limits is shown in Table 2.1.
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channel memory L Es/N0 limit Eb/N0 limit
AWGN channel 0 −3.0 dB 0.0 dB

h1 = (0.4097, 0.8150, 0, 4097) 2 −1.6 dB 1.4 dB

h2 = (
√

0.45,
√

0.25,
√

0.15,
√

0.1,
√

0.05, ) 4 −1.0 dB 2.0 dB
h3 = (0.227, 0.460, 0.688, 0.460, 0.227) 4 0.0 dB 3.0 dB

Table 2.1: Minimum signal to noise ratios for various channels in order to transmit 1/2 (information)
bits per symbol near error-free by using the uniform-input information rate as a lower
bound for the channel capacity. Note that Eb is the energy per information bit and
Eb = Es/R.

2.7 Additive White Gaussian Noise (AWGN) Channel

x̃ y

n

An additive Gaussian noise vector n is added to x̃ where each element in n has zero mean
and variance σ2 = N0/2. All elements are independent and identically distributed (i.i.d.).
Therefore it is possible to calculate the probability that y is received when assuming x̃ was
sent by

P (y|x̃) =
n∏
i=1

p(yi|x̃i). (2.12)

Evaluating the probability densities p(yi|x̃i) can be done with the Gaussian distribution

p(yi|x̃i) =
1√

2πσ2
exp

(
−(yi − x̃i)2

2σ2

)
. (2.13)

2.8 Receiver

Receiver
y û

The receiver has to deal with the corrupted channel symbols y and “guess” what was trans-
mitted by providing an estimate of the information vector û.
The resemblance of an ISI channel and an encoder was already pointed out. Assuming perfect
knowledge about the channel taps and a specific information vector u it is then possible to
“predict” what happens during transmission. Unfortunately the receiver also has to deal with
noise, which only allows to “predict” with a certain reliability depending on how strong the
noise is. And that is exactly what the receiver does. It assumes something that could have
happened, calculates a probability for this event based on what was received and compares
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this probability to all the other events that also could have happened. Then the event with
the highest probability is chosen.

Let us recall for a moment what information the receiver can use in order to make a decision.
y is observed and the receiver has perfect knowledge about

• the distribution of the source bits,

• which kind of encoder, interleaver and mapper is used,

• the ISI channel taps and

• the noise variance σ2 of the AWGN channel.

On this understanding the receiver now has to make a decision.

2.8.1 Important Principles

s/s-MAP and s/s-APP

If a decision is made only about one specific information bit the principle above can be put
into the decision rule

ûi = arg max
s∈{0,1}

P (ui = s|y). (2.14)

That is observing y, calculate the probability for ui being 1 and 0 respectively. Then make a
decision based on the fact which probability is higher.
This principle is referred to as symbolwise maximum a posteriori decision (s/s-MAP). A re-
ceiver that does not only provide the decided bits ûi but also provides the actual probabilities
P (ui|y) and therefore a reliability for its decision is called a symbolwise a posteriori probabil-
ity receiver (s/s-APP). A decoder and equalizer operating according to the s/s-APP principle
is used in this thesis.

Log-Likelihood Algebra

To put the vague word “reliability” on solid mathematical ground we make use of so called
L-values. They are defined as

L(ui) = log

(
P (ui = 0)

P (ui = 1)

)
. (2.15)

This formula converts two related probabilities into a number that can vary from −∞ to +∞,
where −∞ means ui is certainly 1 and +∞ means ui is certainly 0. The larger the difference
between the probabilities, the greater the magnitude of the L-value and therefore the more
reliable the decision bout ui. An L-value of 0 means both possibilities are equally likely. So
we could as well switch a coin to make a decision.
To provide reliabilities becomes important when the receiver is subdivided into different stages:
equalizing and decoding. To pass only “hard decisions” from one stage to another results in
a loss of performance because valuable “soft information”, i.e. the reliability information, is
neglected. This information can be included into the decision making process and improve
the performance.
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2.8.2 The Optimal Receiver

An optimal s/s-APP receiver for the transmission line depicted earlier in Figure 2.3 that results
in the minimal probability of bit error has to calculate the s/s-APP L-value

L(ui|y) = log

(
P (ui = 0|y)

P (ui = 1|y)

)
(2.16)

for every information bit ui. A hard decision according to Equation (2.14) is then simply made
by evaluating the sign of the L-value, i.e. ûi = 0 if L(ui|y) > 0 and ûi = 1 if L(ui|y) < 0. The
reliability of the decision is provided by the magnitude of the L-value.
The question is whether it is possible to evaluate Equation (2.16). The answer is yes, and
only two steps are involved. The first step is to express P (ui|y) with the help of P (u|y) by
summing up over all information vectors actually having a 0 or 1 as their ith element. Then
Bayes’ theorem for conditional probabilities can be applied and we obtain

L(ui|y) = log


∑

u:ui=0

P (u|y)∑
u:ui=1

P (u|y)

 = log


∑

u:ui=0

P (y|u)P (u)∑
u:ui=1

P (y|u)P (u)

 . (2.17)

P (u) can be canceled out because every information bit is assumed to be equally likely 0 or
1. P (y|u) is then evaluated by

1. performing the mapping u→ c→ c̃→ x→ x̃ and

2. calculating the probability density with the help of the Gaussian distribution (2.13):

P (y|u) =
n∏
j=1

p(yj|x̃j). (2.18)

Nonetheless Equation (2.17) is as simple as it is impractical. Even though it can be evaluated
a summation over all information vectors u has to be done. And for every u we have to put
ourselves in the position of the encoder, reconstruct the encoding process up to x̃ and then
calculate the probability for this event based on what was received. Thus the complexity is
proportional to 2k which is not acceptable even for small k.

2.8.3 Separate Equalization and Decoding

Whenever a problem seems too complex to solve as a whole it is a good idea to break it down
to smaller problems, solve them instead and then try to combine the solutions.
Smaller problems in our case would be to separately solve the equalization and decoding tasks.
First an equalizer estimates the channel symbols xi by evaluating y with the s/s-APP rule:

L(xi|y) = log

(
P (xi = +1|y)

P (xi = −1|y)

)
. (2.19)
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u y
Mapper ISI Channel

n

x x̃

(a) for equalization.

u y
Encoder Mapper

n

c x

(b) for decoding.

Figure 2.13: Simplified transmitters for deriving the BCJR algorithm

Knowing that xi and ci are related through a mapper and an interleaver, an s/s-APP decoder
could then easily be provided with likelihoods about the code bits L = (L(c1|y), . . . , L(cn|y)).
This decoder could use L in order to perform another s/s-APP calculation by evaluating

L(ui|L) = log

(
P (ui = +1|L)

P (ui = −1|L)

)
. (2.20)

This would all be senseless if there was not any efficient solution for Equations (2.19) and
(2.20) because still, the only approach for solving these equations so far would be the same
as for the optimal receiver resulting in an unacceptable complexity. Fortunately s/s-APP
calculations can be efficiently solved with the help of trellis-based approaches using the so
called BCJR algorithm [1].

In order to derive the BCJR algorithm the problem of joint equalizing and decoding is broken
down into two simple (and almost similar) tasks. For that purpose have a look at Figure 2.13.
In (a) a simplified transmitter is depicted where the encoder is missing and in (b) encoded
bits are transmitted over an AWGN channel where no intersymbol interference takes place.
In both cases an optimal s/s-APP receiver has to compute

L(ui|y) = log

(
P (ui = 0|y)

P (ui = 1|y)

)
(2.21)

but now considering only one encoding module (either the encoder or the ISI channel) accord-
ing to Figure 2.13.
The BCJR algorithm will be derived in detail for the equalization task and then only the
differences for the decoding task will be pointed out.
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Figure 2.14: Excerpt of the trellis for channel h1 at time i.

Trellis based s/s-APP Equalization

In Figure 2.14 an excerpt of a trellis for channel h1 at time i is depicted. To calculate
P (ui = 0|y) = P (xi = +1|y) the first approach would be analogous to the approach of the
optimal receiver and to sum up over all x that have +1 at the ith place. This way too many
x have to be considered. But by looking at the trellis this probability can be rewritten by
summing up over all edges ε ∈ Ei where λ(ε) = +1 (i.e. all black, dashed lines in Figure 2.14)
and for every ε calculate the probability P (si, si+1|y). That is given y how likely it is that the
trellis at time i changes from state si to state si+1. This leads to

L(ui|y) = log

(
P (ui = 0|y)

P (ui = 1|y)

)
= log

(
P (xi = +1|y)

P (xi = −1|y)

)

= log


∑

ε∈E(λ:+1)
i

P (si, si+1|y)∑
ε∈E(λ:−1)

i

P (si, si+1|y)

 (2.22)

where E (λ:±1)
i is a short notation for {ε ∈ Ei : λ(ε) = ±1}. Let us assume for a moment it is

possible to calculate P (si, si+1|y) for all edges ε ∈ Ei. Then by using the trellis approach the
number of summations in nominator and denominator reduce from 2k−1 to only 2L = 4 for
the case of channel h1.
It is now important to find an efficient way to calculate P (si, si+1|y) for a given edge ε. First
Bayes’ theorem is applied and P (y) is canceled out resulting in

L(ui|y) = log


∑

ε∈E(λ:+1)
i

P (si, si+1,y)∑
ε∈E(λ:−1)

i

P (si, si+1,y)

 . (2.23)
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Then y is rewritten with a head and tail part y = (yh, yi,yt) = ((y1, . . . , yi−1), yi, (yi+1, . . . , yn))
and the joint probability is decomposed to

P (si, si+1,y) = P (si, si+1,yt, yi,yh)

= P (si,yh)︸ ︷︷ ︸
α(A(ε))

P (si+1, yi|si)︸ ︷︷ ︸
γ(ε)

P (yt|si+1)︸ ︷︷ ︸
β(Ω(ε))

. (2.24)

This decomposition allows us to split the probability that the transmitted sequence included
ε in the trellis path under the assumption of observing y into three parts:

1. α(A(ε)): The probability of observing the starting state si and the symbols yh.

2. γ(ε): The probability of observing both the state transition to si+1 and yi at time i when
assuming the starting state si as given.

3. β(Ω(ε)): The probability of observing yt when assuming the state transition to si+1

takes place at time i.

It is possible to calculate α and β by recursively evaluating

α(ν) =
∑

ε∈Ein(ν)

γ(ε)α(A(ε)) ∀ν ∈ Vi (i = 2, . . . , k), (2.25)

β(ν) =
∑

ε∈Eout(ν)

γ(ε)β(A(ε)) ∀ν ∈ Vi (i = k − 1, . . . , 2) (2.26)

and initializing α(ν) = 1 for ν ∈ V1 and β(ν) = 1 for ν ∈ Vk+1. The initialization reflects the
convention to let every trellis start and end in the all-zero state respectively, so obviously the
probability of observing those states is 1.

A further decomposition of γ results in

γ(ε) = P (si+1, yi|si) (2.27)

= P (si+1|si)︸ ︷︷ ︸
a priori

P (yi|si, si+1) (2.28)

The first a priori probability does not depend on any observation. When we look at the trellis
and pretend to be in any state at time i, the question of which edge to chose to go to the next
state is only determined by the distribution of the input symbol xi or P (si+1|si) = P (xi = λ(ε))
for a given ε. This probability is fixed before transmitting the data over the channel, thus
it is named a priori. The second probability only depends on the observation yi or, in other
words, how the AWGN channel distorts a transmitted symbol x̃i. Because when we assume
the state transition si → si+1, then the output of the ISI channel µ(ε) is determined. Thus
when assuming µ(ε) of being transmitted over the AWGN channel, the probability density
of receiving yi is p(yi|µ(ε)) and can be calculated with the Gaussian distribution (2.13). In
summary γ can be calculated by

γ(ε) = P (xi = λ(ε)) · p(yi|µ(ε)). (2.29)

It is now possible to formulate the BCJR algorithm for the problem of equalization.
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BCJR algorithm: Given the full trellis graph and the observation y the s/s-APP L-values
L(ui|y) are calculated by

• assigning every edge ε ∈ E a metric γ(ε) according to (2.29),

• calculating all α(ν) with the forward recursion in (2.25),

• calculating all β(ν) with the backward recursion in (2.26) and finally

• calculating

L(ui|y) = log


∑

ε∈E(λ:+1)
i

α(A(ε)) · γ(ε) · β(Ω(ε))∑
ε∈E(λ:−1)

i

α(A(ε)) · γ(ε) · β(Ω(ε))

 . (2.30)

The complexity of this algorithm of course depends on k but it does not grow exponentially
when increasing k. The prevailing complexity factor is not the “length” of the trellis but its
“height” or the number of states in the trellis. As the number of states in the trellis grows
exponentially with the number of delay elements in the ISI channel this algorithm is feasible
for “short” channels only.
Inserting Equation (2.29) into (2.30) leads to (note that L-values for ui and for xi are the same
for the simplified transmitters in Figure 2.13)

L(xi|y) = log


∑

ε∈E(λ:+1)
i

α(A(ε)) ·P (xi = λ(ε)) · p(yi|µ(ε)) · β(Ω(ε))∑
ε∈E(λ:−1)

i

α(A(ε)) ·P (xi = λ(ε)) · p(yi|µ(ε)) · β(Ω(ε))

 . (2.31)

The factor P (xi = λ(ε)) will be the same in every summand for the nominator (P (xi = +1))
and denominator (P (xi = −1)). Thus it is possible to split the L-value into

L(xi|y) = log

(
P (xi = +1)

P (xi = −1)

)
+ log


∑

ε∈E(λ:+1)
i

α(A(ε)) · p(yi|µ(ε)) · β(Ω(ε))∑
ε∈E(λ:−1)

i

α(A(ε)) · p(yi|µ(ε)) · β(Ω(ε))


= Lapr(xi) + Lext(xi|y).

(2.32)

The s/s-APP L-value consists of two parts:

1. The a priori L-value Lapr or “what is known about xi prior to the equalization process”.

2. The extrinsic L-value Lext or “what the equalizer adds to the a priori knowledge about
xi during the equalization process”.

The expressions in quotation marks might seem a little sloppy but the new L-values deserve
a descriptive interpretation because they address to a concept that will play a dominant role
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s/s-APP
Equalizer
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EXT

OUT

yChannel observation

Lapr(xi)A priori L-values

L(xi|y)
s/s-APP L-values

Lext(xi|y) Extrinsic L-values

Figure 2.15: Block diagram for the equalizer module. The equalizer takes the corrupted channel
symbols and a priori information about the channel symbols as its input and generates
s/s-APP and extrinsic L-values as its output.

when introducing the turbo principle in the next chapter. Note that for a transmission line
where Lapr(xi) = 0 for all xi, i.e. the channel symbols are equally likely 0 and 1, the s/s-APP
L-value L(xi|y) will be the same as the extrinsic L-value Lext(xi|y).
In Figure 2.15 a module which implements the BCJR algorithm for optimal s/s-APP equal-
ization of an ISI channel is shown.
The module expects the channel observation y and the a priori L-values about the channel
symbols x as its input. In order to convert the a priori L-values to probabilities that are
needed for calculating γ in (2.29) some algebra can be applied to the definition of an L-value
resulting in

P (xi = λ(ε)) =
e−λ(ε)Lapr(xi)

1 + e−Lapr(xi)
. (2.33)

Trellis based s/s-APP Decoding

The necessary steps for optimal symbolwise decoding when a transmitter according to Figure
2.13 (b) is assumed are similar to the steps in the last section. The s/s-APP L-value L(ui|y) is
simplified similarly by exploiting the trellis representation of the convolutional encoder. The
decomposition

P (si, si+1,y) = P (si,yh)︸ ︷︷ ︸
α(A(ε))

P (si+1|si)︸ ︷︷ ︸
a priori

P (yi|si, si+1)

︸ ︷︷ ︸
γ(ε)

P (yt|si+1)︸ ︷︷ ︸
β(Ω(ε))

(2.34)

is the same as above, with one slight difference. For an encoder of rate R = 1/2 a state
transition si → si+1 generates two output bits. Therefore for one state transition the likelihood

of observing two distorted channel symbols yi = (y
(1)
i y

(2)
i ) has to be calculated (the notation is

in analogy to ci in section 2.3). Because of the AWGN channel in Figure 2.13 (b) the channel
symbols are distorted by independent noise samples and therefore the metric γ can be written
as

γ(ε) = P (ui = λ(ε)) ·P (y
(1)
i |c(1)

i = µ1(ε)) ·P (y
(2)
i |c(2)

i = µ2(ε))

= P (ui = λ(ε)) · p(y(1)
i |(−1)µ1(ε)) · p(y(2)

i |(−1)µ2(ε)).
(2.35)
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Recall that µ1(ε) and µ2(ε) refer to the first and second output bit of the encoder when ε
and thus a specific state transition si → si+1 is given. Therefore an implicit BPSK mapping
is necessary when declaring the probability densities which are again calculated using the
Gaussian distribution (2.13).
The BCJR algorithm can now be formulated in the same manner as before with the only
difference that for decoding the metric in (2.35) is used. The resulting s/s-APP L-value can
be written as

L(ui|y) = log


∑

ε∈E(λ:0)
i

α(A(ε)) · γ(ε) · β(Ω(ε))∑
ε∈E(λ:1)

i

α(A(ε)) · γ(ε) · β(Ω(ε))

 . (2.36)

For a decoder is it also possible to calculate s/s-APP L-values for the code bits. Therefore the
above equation is slightly modified:

L(c
(1)
i |y) = log


∑

ε∈E(µ1:0)
i

α(A(ε)) · γ(ε) · β(Ω(ε))∑
ε∈E(µ1:1)

i

α(A(ε)) · γ(ε) · β(Ω(ε))

 , (2.37)

L(c
(2)
i |y) = log


∑

ε∈E(µ2:0)
i

α(A(ε)) · γ(ε) · β(Ω(ε))∑
ε∈E(µ2:1)

i

α(A(ε)) · γ(ε) · β(Ω(ε))

 . (2.38)

Before the above equations are split into a priori and extrinsic part in the same manner as for
equalization, it is helpful to define the channel L-value

Lch(yi) = log

(
P (yi|ci = 0)

P (yi|ci = 1)

)
. (2.39)

This channel L-value expresses a likelihood about the code bits resulting solely from the
corresponding distorted channel symbol yi. Equations (2.36), (2.37) and (2.38) can then be
split for

ui, NSC encoder: L(ui|y) = Lapr(ui) + Lext(ui|y), (2.40)

ui, RSC encoder: L(ui|y) = Lapr(ui) + Lch(y
(1)
i ) + Lext(ui|y), (2.41)

ci, first output: L(c
(1)
i |y) = Lch(y

(1)
i ) + Lext(c

(1)|y), (2.42)

ci, second output: L(c
(2)
i |y) = Lch(y

(2)
i ) + Lext(c

(2)|y). (2.43)
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for info. bits
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for info. bits

Figure 2.16: Block diagram for the decoding module. The module requires likelihoods of the code
bits and not actual observation y as its input.

It is possible to separate the channel L-value from the s/s-APP L-value for the code bits. For
the information bits this further separation is only possible when a systematic encoder is used.
This separation of channel information and a priori and extrinsic information respectively is
not possible for the equalizer because an ISI channel always represents a non systematic
encoder. In figure 2.16 a block diagram of the decoding module is shown.
Note that this module expects the observation to be passed as channel L-values Lch(yi) or
likelihoods about the code bits not as actual observation yi. For an AWGN channel those
likelihoods can be calculated by evaluating

Lch(yi) = log

(
P (yi|ci = 0)

P (yi|ci = 1)

)
= log

(
p(yi|+ 1)

p(yi| − 1)

)
= log

 1√
2πσ2

exp
(
− (yi−1)2

2σ2

)
1√

2πσ2
exp

(
− (yi+1)2

2σ2

)
 =

2yi
σ2
.

(2.44)
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Figure 2.17: Classical receiver design employing successive equalization and decoding. Note that
passing extrinsic L-values (EXT) and s/s-APP L-values (OUT) from equalizer to
decoder is the same when no a priori information is available.

Combining Equalization and Decoding

The s/s-APP modules derived in the last two sections can now be used to design a receiver
for the transmission line. In Figure 2.17 the classical approach of separate equalization and
decoding that was already described roughly at the beginning of this section is shown. The
first module equalizes the ISI channel and calculates s/s-APP L-values of the channel symbols.
These L-values are then used as input for the decoder (after deinterleaving).
Two implicit assumptions are made. First it is implied that x is generated by an ideal source,
i.e. the equalizer assumes the a priori probability of xi to be equally likely 1 or 0 and identical
for all i. This is not necessarily true because x is the output of an encoder and not of an
ideal source. Second the decoder assumes the input likelihoods about the code bits to be
independent of each other (like they would be when resulting from an AWGN channel). But
the s/s-APP L-values for successive channel symbols calculated by the equalizer are correlated
as shown in Figure 2.18. The implemented deinterleaver shuffles these L-values before passing
them to the decoder thus lowering the correlation between adjacent L-values.

We tested the receiver design for a block length of k = 10000 with the (37, 21) RSC encoder
and ISI channel h2. Figure 2.19 shows the bit error rate over the signal-to-noise ratio. Results
are obtained by Monte-Carlo simulation. The interleaver improves the performance to a large
extent for high SNR due to the reason stated above. It also can be seen that for a bit error
rate of 10−5 performance is about 6.4 dB away from the limit.
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Figure 2.18: Autocorrelation for an example sequence of s/s-APP L-values (L(x1|y), . . . , L(xn|y))
obtained with parameters k = 10000, channel h2 and Eb/N0 = 6 dB.
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Figure 2.19: Simulation results for separate equalization and decoding (k = 10000, ISI channel h2
and (37,21) RSC encoder).
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Chapter 3

Iterative Equalization

3.1 The Turbo Principle

The classical receiver which was presented at the end of the last chapter performs successive
equalization and decoding and has two major problems:

1. The output L-values of the equalizer are correlated.

2. No a priori information about x is available for the equalization process.

The impact of the correlation can be reduced with the help of a random interleaver which
shuffles the correlated likelihoods of the channel symbols before passing them to the decoder.
The turbo principle addresses the second problem.

Turbo principle: Perform iterative s/s-APP estimations about symbols xi with successively
refined a priori L-values Ljapr(xi). For the calculation of Ljapr(xi) use all the preferably statis-
tically independent information which is available at iteration (j − 1).

This definition is taken from [15] and slightly adjusted to the notation used in this thesis. The
turbo principle is very general and can be applied to a variety of problems [15]. In the next
section it is described how this principle can be applied to the problem of equalization and
decoding.

3.2 Turbo Equalization

We define the successive process of equalization and decoding to be one iteration for the
purpose of the turbo principle. Initially during the first iteration (j = 1) the equalizer has
to estimate the channel symbols with a priori L-values L1

apr(xi) = 0 for all xi simply because
there is no a priori information available. This leads to a suboptimal estimation due to the fact
that x results from encoding u and not from an ideal source. According to the turbo principle
a new s/s-APP estimation should now be performed with refined a priori L-values L2

apr(xi).
A refined version of the a priori L-values is obtained by considering the extrinsic L-values of
the decoder about the code bits c as statistically independent information about the channel
symbols x. Therefore a feedback loop between the decoder and the equalizer is established as
shown in Figure 3.1. With these refined a priori L-values a new estimation about the channel
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Figure 3.1: Iterative receiver employing turbo equalization. The equalizer performs iterative s/s-
APP estimations about the channel symbols. Therefore the extrinsic L-values from the
decoder about the code bits are used as a priori L-values in the next iteration.

symbols is done by the equalizer. Extrinsic L-values are passed to the decoder providing even
more refined a priori L-values and so on. This iterative process is finally stopped after a
defined number of iterations or by using a stop criterion. A very simple but effective method
to stop the iterative process is to evaluate the hard decisions about the information bits in
each iteration and stop if no change occurs for two successive iterations [16].

Note that only extrinsic L-values are passed to the next module. This applies to both the
equalizer and the decoder. To verify this we will describe the “flow” of L-values during the
iterative process and see what would happen if s/s-APP L-values instead of extrinsic L-values
are passed to the next module.
During the first iteration the equalizer takes y and decides about the channel symbols in form
of L-values L(xi|y) which are passed to the decoder. The decoder assumes these L-values
to be uncorrelated likelihoods about the code bits and treats them as channel L-values Lch.
The decoder performs s/s-APP decoding solely based on those L-values. The resulting s/s-
APP L-values about the code bits contain the input channel L-values Lch as an independent
portion of information (see Equations (2.42) and (2.43)). If s/s-APP L-values are now fed
back as a priori information back to the equalizer the decoder would simply reinform the
equalizer about something that it already knows. Positive feedback would be created. In [16]
it is investigated that this positive feedback has a negative impact on the convergence of the
turbo equalization process. The problem is that once the L-values passed from one module
to the other become too large, i.e one module is too sure about its decision, further iterations
yield no improvements in terms of bit error rate. When positive feedback is created the same
information about symbols is used several times and treated as independent information. Thus
during the first few iterations the modules would get too optimistic about their decisions and
no further improvements can be obtained. For the same reason only extrinsic L-values are
passed from the equalizer to the decoder. The s/s-APP L-values of the equalizer contain the a
priori L-values from the decoder as independent information about the channel symbols (see
Equation (2.32)) thus feeding them back again to the decoder would create positive feedback.
The key is how to define which information can be used to calculate refined a priori L-values
for the next iteration without creating positive feedback. This is a crucial factor in turbo
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equalization as well as in any other situation where the turbo principle is applied.

3.2.1 Simulation

We tested the iterative receiver in Figure 3.1 by simulating the bit error rate for different
signal to noise ratios with ISI channels h1, h2 and h3. A random interleaver, k = 10000 and
the (37,21) RSC encoder were used. Perfect channel knowledge is assumed. The results can
be seen in Figure 3.2. The graphs are ordered from top to bottom according to the theoretical
limits of the channels. The “best” ISI channel is displayed at the top and the “worst” ISI
channel at the bottom. ISI channel h3 is also referred to as a worst case scenario for a
time-invariant intersymbol interference channel with five taps [7].
The number of performed iterations is indicated by a number next to the corresponding
curve. Note that when only one iteration is performed the receiver structure is equivalent to
the conventional approach of successive equalization and decoding.

The first thing to observe is that the performance significantly improves for all channels when
using the turbo equalization approach. During the second iteration the performance gain is
largest and decreases with each further iteration. One can also see that most performance
gain is achieved for channel h3 which has the most severe frequency distortions.
The bit error rate seems to be lower bound by the performance of the used convolutional
encoder on an AWGN channel without ISI. Thus at about 5.3 dB a bit error rate of 10−5

is reached after performing 12 iterations independent of the ISI channel. In other words the
iterative equalization approach allows to completely overcome the negative effects of the tested
intersymbol interference channels after 12 iterations.
Nonetheless the fact that the performance does not exceed this lower bound has an impact on
the evaluation of this scheme in absolute terms when comparing the results to the information
theoretical limits. For channel h3 the gap to the limit is about 2.3 dB at a bit error rate of
10−5. This gap increases for the other channels because their theoretical limits are lower. So
for channel h1 the gap between the limit and achievable signal to noise ratio for a bit error
rate of 10−5 is still about 3.9 dB.
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Figure 3.2: Simulation results for turbo equalization as a function of the performed iterations. The
dashed line shows the performance of the (37,21) RSC encoder when transmitting over
an AWGN channel without ISI.

30



Chapter 3 Iterative Equalization

D D

0.4097 0.8150 0.4097

bxi

x̃i

Figure 3.3: ISI channel h1 having a recursive structure. Note the resemblance to an RSC encoder.

3.3 Precoding

Iterative equalization can provide great performance improvements over the conventional ap-
proach up to a point where the bit error rate performance reaches that of a convolutional
encoder when transmitting over an AWGN channel without ISI. It seems as though the over-
all error-correcting capability of the scheme is determined by that of the outer convolutional
encoder and that the bit error rate can not be lower for an ISI channel than for an AWGN
channel without ISI for the same signal to noise ratio using identical error-correcting encoders.

However the convolutional encoder and the ISI channel can be regarded as a serially concate-
nated encoder where symbols are transmitted over an AWGN channel without ISI. This is only
a different point of view on the exact same transmission line. In [17] serially concatenated
encoders that consist of two convolutional encoders are studied and design rules for these
encoders are presented. It is derived that “ [. . . ] the inner encoder must be a convolutional
recursive encoder”. Basically precoding addresses to this design rule and tries to make the ISI
channel, i.e. the inner encoder of the serially concatenated encoder, recursive. An example of
an ISI channel having a recursive structure is depicted in Figure 3.3.
Unfortunately the ISI channel itself cannot be modified because it represents the underlying
real-life communication channel. Conceptually modifications can only be done in the trans-
mitter. Therefore a precoder is introduced in the transmission line between mapper and the
ISI channel. Thus the channel symbols are modified before being transmitted as shown in
Figure 3.4.
The recursive ISI channel has great resemblance to an RSC encoder and it is of course possible
to design different precoders. For simplicity we are restricting ourselves to the differential
precoder shown in Figure 3.4.
It should be noted that the implementation of a precoder does not increase the complexity
in the equalizer as long as the memory of the precoder is equal to or smaller than the length
of the ISI channel. Because the cascade of precoder and ISI channel can then be regarded as
a recursive ISI channel with the same length as shown in Figure 3.3. Thus the states in the
trellis and therefore the complexity of the BCJR algorithm will remain the same.
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Figure 3.4: Differential precoder which is implemented in the transmitter to make the cascade of
precoder and ISI channel – and thus the inner encoder of the serially concatenated code
system – recursive.

3.3.1 Simulation

The bit error rate of the transmission line including the differential precoder was simulated
using turbo equalization. The same parameters as before were used, i.e. the same random
interleaver, k = 10000 and the (37,21) RSC encoder. Results are shown in Figure 3.5.

It can be seen that the differential precoder has a great impact on the bit error rate of the
transmission line when turbo equalization is used in the receiver.
Compared to the case where no precoder is present the bit error rate does not seem to be
lower bound by the performance of the used encoder on an AWGN channel without ISI and
the curves do not converge towards the dashed line. Besides that all curves decrease faster
once a “breaking point” with a bit error rate of about 10−1 is reached. This is very distinctive
when 12 iterations are performed in which cases the curves almost deviate vertically.
When comparing the curves for 12 iterations for precoded and not precoded channels (Figure
3.2) it can be seen that for regions below the limit and closely above the limit (approximately
within 1 dB) performance significantly decreases when the channel is precoded. Compare for
example the two curves for channel h2 at 3 dB after 12 iterations. In the case where no
precoder is present the bit error rate is at about 2 · 10−3 and close to the dashed line. However
when a precoder is used the bit error rate is at about 2 · 10−1. Similar observations can be
made for the other channels for signal to noise ratios up to about 1 dB above their limits. So
for some signal to noise ratios performance decreases when a precoder is used. It should be
noted though that the corresponding bit error rates for these signal to noise ratios are usually
not of great practical interest.
By using a differential precoder and turbo equalization in the receiver it is possible to approach
the capacity limit for a bit error rate of 10−5 up to about 1.5 dB for channel h1, up to about
1.8 dB for channel h2 and up to about 2.1 dB for channel h3 after 12 iterations.
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Figure 3.5: Simulation results for turbo equalization as a function of the performed iterations. The
dashed line shows the performance of the (37,21) RSC encoder when transmitting over
an AWGN channel without ISI.
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3.4 Discussion

In this chapter the performance of an iterative receiver structure employing turbo equalization
was tested for different ISI channels. It was shown that iterative estimations of the channel
symbols done with “refined” a priori L-values resulting from the decoder can improve error
correcting performance of the overall scheme to a large extent. Performance significantly
changed with the implementation of a precoder which appears to be the crucial factor to
achieve performance close to the theoretical limits of an ISI channel.

Through a union bound analysis it can be shown that the performance of the iterative receiver
is determined by the free distance of the outer convolutional code when no precoder is imple-
mented [3]. Therefore one way to improve the performance in that case is to employ a more
potent convolutional outer code having a higher free distance. This can be done by increasing
the memory of the encoder, but unfortunately this is accompanied by an exponential increase
in decoding complexity which is usually not desirable.
The idea of implementing a precoder however seems to exploit the structure of the transmission
line very well. The reason for the design rule derived in [17], i.e. to always use a recursive
inner encoder in a serially concatenated code system, relies on an analysis showing that a
recursive inner encoder always yields a so called interleaver gain. It is shown in [3] that by
introducing a precoder a similar gain can be achieved in a transmission line where an ISI
channel is employed as the inner encoder. This so called precoder weight gain can be roughly
explained by the fact that a recursive convolutional encoder like a precoder has an infinite unit
impulse response. Low weight codewords resulting from the outer encoder are more likely of
being transformed into high weight codewords transmitted over the ISI channel. It can also
be shown that different precoders have different effects on the performance and the choice of
the precoder has to be adjusted to the overall needs of the communication system [3].
An interesting observation can be made by looking at the simulation results presented in [8].
With the choice of very “costly” parameters (k = 25000, s-random interleaver, 20 iterations)
the limit of channel h1 can be approached within 1 dB at a bit error rate of 10−5. This
is especially interesting because “only” a (7,5) NSC encoder was employed. The outer code
therefore has a smaller free distance than the code of the (37,21) RSC encoder and significantly
less decoding time is needed. It seems to be more important to fully take advantage of the
interleaver gain, i.e. to employ a precoder, to design good interleavers and to use large block
lengths than to employ a potent convolutional outer encoder at least for the bit error rates
and channels considered here.
It was also pointed out that for some signal to noise ratios performance significantly decreases
when a precoder is used. An explanation can be found in [9] where it is shown that precoding
results in a loss of reliability during the first iteration of turbo equalization.
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Equalization and Turbo Decoding

4.1 Turbo Codes

Error-correcting capability of rate-1/2 convolutional codes can be improved by increasing the
memory M of the underlying encoder. Unfortunately this is accompanied by the problem
that decoding complexity also increases exponentially with M up to a point where optimal
decoding becomes impractical.
The general idea behind turbo codes, which are a class of so called concatenated codes, is to
improve error-correcting performance by combining two or more convolutional encoders having
relatively small memory M such that the code of each encoder can be decoded with reasonable
complexity. Performance is improved by applying the turbo principle in the decoder, i.e.
allowing the decoders to exchange their extrinsic information about the information bits.

4.1.1 Encoder

A turbo code is the set of all codewords resulting from a parallel concatenated convolutional
encoder which is depicted in Figure 4.1 for R = 1/3 [4].
The encoder consists of two identical RSC encoders but only the redundancy part (i.e. the
second output) is considered. The information vector u is interleaved by a random interleaver
before being passed to the second RSC encoder. Thus ci (the part of the codeword at time

RSC encoder
(only

redundancy)

RSC encoder
(only

redundancy)
πt

b

b

c(1)

c(2)

c(3)

u

ũ

Figure 4.1: Parallel concatenated convolutional encoder with rate 1/3. The set of all codewords is
a turbo code.
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Figure 4.2: In a turbo decoder two s/s-APP modules work together on the same observation about
the information bits by iteratively exchanging their extrinsic information.

i) consists of the information bit ui and two parity bits c
(2)
i and c

(3)
i respectively. This can be

seen as a conventional concatenation of two convolutional codes [13].

A rate-1/2 code can be obtained by periodically eliminating code bits in the codewords of
a rate-1/3 code such that the resulting codewords have length 2k. This method is called
puncturing. In this work only parity bits in c(2) and c(3) are punctured and the systematic
part c(1) = u of the codeword remains unaltered because observation about c(1) will be used
by both decoding modules in a turbo decoder (see below). The puncturing pattern is known
to the receiver and missing observations about punctured code bits are added in the receiver
by assuming L-values Lch(yi) = 0 for all punctured code bits.

4.1.2 Decoder

A turbo decoder is shown in Figure 4.2. The simplified transmitter (Figure 2.13 (b)) is
assumed, i.e. a codeword is BPSK modulated and then transmitted over an AWGN channel.
The SPLIT-module allocates the input likelihoods about the code bits Lch(yi) = 2yi/σ

2 to the
two decoder modules. The likelihoods about c(1) and c(2) are passed to the first decoder and
the interleaved likelihoods about c(1) together with the likelihoods about c(3) are passed to
the second decoder. That means both decoders work with the same observations about the
information bits.
The essential idea is the application of the turbo principle in the decoder as follows. Initially
the first decoder calculates s/s-APP L-values based solely on the input observation likelihoods.
Extrinsic information about the information bits is extracted, interleaved and passed to the
second decoder. This module assumes these L-values to be statistically independent a priori
L-values of the information bits. Together with its channel observation s/s-APP L-values are
calculated. Further iterations are performed by introducing a feedback loop from the second
to the first decoder passing forward again only the extrinsic L-values. The first decoder can
then calculate new s/s-APP L-values with “refined” a priori L-values of the information bits
and so on. The iterative process can be stopped either by using a stop criterion or after a
defined number of iterations.
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Figure 4.3: Simulation results for a turbo decoder when the encoded bits are transmitted over an
AWGN channel without ISI.

Performance on an AWGN channel without ISI

Turbo codes have been shown to provide good error-correcting performance close to the infor-
mation theoretical limits of an AWGN channel when large block lengths k are used [4].

The bit error rate of a transmission line consisting of a parallel concatenated encoder with two
(37,21) RSC encoders (R = 1/2) and a turbo decoder according to Figure 4.2 was simulated.
Bits were BPSK modulated and transmitted over an AWGN channel without ISI. A block
length of k = 10000 was used. The results are plotted in Figure 4.3.
It can be seen that for a bit error rate of 10−5 the gap to the theoretical limit is only 0.9 dB
after 12 iterations. This “near Shannon limit error-correcting coding and decoding” [4] was the
starting point that led to a thorough investigation of turbo codes and the underlying theory
in a variety of applications.
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4.2 Separate Equalization and Turbo Decoding

The convolutional encoder in the original transmission line (Figure 2.3) is now replaced by a
parallel concatenated convolutional encoder with rate R = 1/2.
The first receiver design is equivalent to the approach of separate equalization and decoding
which was presented at the end of Chapter 2. The receiver structure is shown in Figure 4.4.
The equalizer takes the received channel symbols y and provides s/s-APP L-values of the
channel symbols x. These L-values are interleaved and passed to the turbo decoder. Turbo
decoding is performed as described in Section 4.1.2.
Note that the used interleavers have different lengths. The interleaver separating the equalizer
and the turbo decoder permutes the code bits and has length n = 2k. The interleavers em-
ployed in the turbo decoder (which are denoted with an index t) correspond to the interleaver
in the parallel concatenated encoder and have length k.

4.2.1 Simulation

The receiver in Figure 4.4 was tested by using a block length of k = 10000, random interleavers
and two (37,21) RSC encoders in the encoder. Results are shown in Figure 4.5. The number
next to a curve corresponds to the number of iterations performed by the turbo decoder.
The resulting curves look similar to the curves presented for the turbo decoder when trans-
mitting over an AWGN channel without ISI – only with different “offsets” to the limits of
the ISI channels. The gap between limit and achievable minimum signal to noise ratio for
a bit error rate of 10−5 after 12 iterations increases with the limit of the ISI channel. This
suggests that the good error-correcting performance of turbo codes is strongly impaired when
likelihoods about code bits do not result from an ideal AWGN channel but from an equalizer
trying to cope with intersymbol interference - especially when the ISI channel has severe fre-
quency distortions like channel h3. The performance of the scheme suffers from a suboptimal
estimation of the channel symbols because no a priori input is available for the equalizer.
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Figure 4.5: Simulation results for separate equalization and turbo decoding as a function of itera-
tions performed in the turbo decoder.
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Figure 4.6: Combined turbo equalization and turbo decoding. The extrinsic information about
the code bits is fed back to the equalizer and used as a priori information in the next
iteration.

4.3 Combined Turbo Equalization and Turbo Decoding

Now the turbo principle is applied to the equalization process. Refined a priori L-values of
the channel symbols x are obtained by feeding back extrinsic information about the code
bits from the turbo decoder to the equalizer. A complete receiver employing combined turbo
equalization and turbo decoding is shown in Figure 4.6.

It is necessary to define extrinsic information about the code bits with respect to the turbo
decoder. So far extrinsic information about code bits is only defined with respect to a particular
s/s-APP module (see Equations (2.42) and (2.43)). However the turbo decoder consists of
two s/s-APP decoding modules, so that the two outputs about extrinsic code bit information
(EXTC) of each decoder have to be combined. This is done by the MUX-module as follows.
Obviously the extrinsic L-values of the code bits c(2) must result from the first decoder whereas
the extrinsic L-values of the code bits c(3) must result from the second decoder. However the
two modules operate with the same observation about the systematic part of the codeword c(1)

(i.e. the information bits). It follows that both decoders provide extrinsic information about
this part of the codeword. Therefore we define the superposition of the latest refined extrinsic
L-values of both decoders about a specific information bit to be the extrinsic information
about the corresponding code bit in the systematic part of the codeword with respect to the
turbo decoder.
A closer look at Equations (2.42) and (2.41) reveals that the extrinsic L-value of a code bit
in the systematic part of the codeword for each decoder always consists of two parts: the
extrinsic L-value of the information bit plus the a priori L-value of that information bit. In a
turbo decoder the a priori L-value of an information bit used by one decoder is the extrinsic
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L-value of that information bit of the other decoder. Therefore the extrinsic L-values of the
code bits c(1) of the second decoder can be used as extrinsic information about this part of
the codeword (after being deinterleaved) with respect to the turbo decoder.
The MUX-module combines the extrinsic L-values of c(1), c(2) and c(3) in the correct order so
that they can be used as a priori information about the channel symbols by the equalizer after
interleaving.

4.3.1 Simulation

The simulation setup used to test the combined receiver was similar to the setup in the last
section for separate equalization and turbo decoding, i.e. k = 10000, random interleavers and
(37,21) RSC encoders. Results are shown in Figure 4.7. The number of iterations performed
by the turbo decoder (inner iterations) is equal to the overall number of iterations for turbo
equalization (outer iterations). So when b outer iterations are performed the total number of
inner iterations add up to b2.

For the combined approach a large performance gain can be observed during the second outer
iteration which is very distinctive. After this second outer iteration the combined approach
offers comparable performance to the separate approach after 12 iterations (done solely by the
turbo decoder) at a bit error rate of 10−5. With other words a total of 4 iterations done by
the turbo decoder in the combined approach is sufficient to allow performance similar to the
separate approach where 12 iterations are performed by the turbo decoder.
Nonetheless one can also see that performing additional outer iterations only achieves a minor
performance gain. Even for 12 outer iterations and a total of 144 inner iterations only about
1 dB can be gained compared to 2 outer iterations and a total of 4 inner iterations at a bit
error rate of 10−5 for each channel.
When evaluating the combined approach in absolute terms with respect to the theoretical
limits it is necessary to differentiate between the three ISI channels. For channels h1 and
h2 and a bit error rate of 10−5 the signal to noise ratio is about 1.6 dB away from the limit
which is comparable to the approach where a convolutional outer encoder and a differential
precoder is used. However a large amount of total iterations has to be performed. For channel
h3 the gap to the limit is about 3.5 dB at a bit error rate of 10−5. This performance is
significantly worse than the performance of a turbo equalization scheme where a conventional
outer convolutional encoder is employed – regardless of whether the ISI channel is precoded
or not.
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Figure 4.7: Simulation results for combined turbo equalization and turbo decoding as a function of
iterations for turbo equalization. Number of iterations performed by the turbo decoder
are equal to the overall number of iterations for turbo equalization.
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4.4 Discussion

The approach of combined turbo equalization and turbo decoding provides good performance
for ISI channels h1 and h2. The minimum signal to noise ratio which is needed to achieve
a bit error rate of 10−5 after 12 iterations is comparable to that of the approach where a
convolutional encoder and a differential precoder is used. However the results for channel h3
show that the performance of the scheme decreases rapidly for worse ISI channels. This is very
apparent when comparing the performance results for channel h3 with the approaches in the
last chapter where a convolutional outer encoder is used. For both the normal ISI channel and
the precoded ISI channel turbo equalization offers a bit error rate of at least 10−5 at 5.5 dB
whereas the approach of combined turbo equalization and turbo decoding only achieves a bit
error rate of 10−1. This has to be considered when thinking about practical applications of
this scheme for example in mobile communication systems. Because usually the underlying ISI
channel is not time-invariant but changes with time and is only assumed to be time-invariant
for short periods. Thus a receiver should provide good performance both when the ISI channel
suffers from minor and severe frequency distortions because both scenarios might only a be a
short time instant apart.

Another problem of the combined approach is its high complexity and the question how it can
be reduced. 12 iterations performed for turbo equalization means that for each new estimation
of channel symbols the turbo decoder has to perform 12 inner iterations such that a total of
144 inner iterations are performed. This shows the need for a suitable stop criterion so that
the total number of iterations performed by the turbo decoder can be reduced. The question
however is how to define a criterion as suitable.
The combined approach was also tested including a differential precoder. The effect was a
general decrease in performance regardless of the ISI channel. More importantly for some
constellations of outer iterations and inner iterations the combined decoder also did not seem
to provide a stable solution, i.e. L-values increased rapidly resulting in numerical instabilities
in the simulation setup. This strongly underlines the need for suitable stop criterion besides
complexity reasons.
Unfortunately the paper in which the combined approach of turbo equalization and turbo
decoding is proposed [10] contains very little information about the inner turbo decoder and
it only can be guessed how many inner iterations are performed with respect to one outer
iteration. The list of possible combinations is literally endless and can comprise a stop criterion
of some sort as well as a fixed number of iterations which somehow depend on the number of
outer iterations (equal, increasing, decreasing, . . . ). For the latter there is no reason to prefer
or avoid one of those methods apart from a brute force method to check all combinations
despite maybe heuristic considerations.
This is closely related to the question of convergence and stability of the combined receiver
because it contains two feedback loops. Regardless of the stop criterion or whether a fixed
number of inner iterations is used the receiver should ensure stability in any case. In fact no
simple answer for this question exists even when only considering either turbo equalization or
turbo decoding alone.
The decoder structure presented in [10] also contains some inconsistencies like the fact that the
channel likelihoods about the code bits are not subtracted from the s/s-APP L-values when
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passing extrinsic information from one decoder to the next but are subtracted when passing
extrinsic L-values back the equalizer. It also remains uncertain why a transformation from
the channel MAP’s extrinsic L-values to equivalent soft channel input is needed. This seems
to be merely a necessity resulting from the introduced s/s-APP modules which only accept
soft channel input rather than to have any effect on the decoding process itself.

A problem that arises with the use of parallel concatenated convolutional encoders is the error
floor. Bit error rates tend to decrease rapidly for medium signal to noise ratios but then hit
an error floor where the bit error rate remains almost constant even when the signal to noise
ratio increases. The fact that the curves in Figure 4.5 do not deviate very steeply supposes
that an error floor is present at around a bit error rate of about 10−6. This topic was avoided
in thesis by considering only bit error rates up to 10−5 but applications like magnetic disc
recoding require much lower bit error rates so that this topic becomes relevant there.

As a summary it can be said that in some situations the combined decoder can offer comparable
performance to the approach where a classical convolutional outer encoder and a differential
precoder is used. Unfortunately performance is highly dependent on the underlying ISI chan-
nel. Apart from that an immense amount of iterations has to be performed and the problem
of convergence and stability remains unsolved.
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Conclusion

In this thesis different approaches to counter the detrimental effects of noisy ISI channels have
been presented.
It was shown that the application of the turbo principle in the receiver and performing itera-
tive estimations about the channel symbols can significantly increase performance. Extrinsic
information about the code bits is therefore fed back from the decoder to the equalizer and
used as a priori information about the channel symbols. This is equivalent to a decoder which
iteratively decodes a serially concatenated convolutional code. The introduction of a precoder
was motivated by design rules derived for such serially concatenated convolutional codes which
state (among other things [17]) to always employ a recursive inner encoder in order to achieve
an interleaver gain. Simulations revealed that implementing a precoder in fact seems to let
the receiver exploit the structure of the transmission line very well. It was derived that for
further improvements it might be more important to fully exploit the interleaver gain than
to employ potent error-correcting outer convolutional codes – at least for the bit error-rates
that have been considered. It is also important that different precoders have different effects
on the performance and the precoder choice should therefore be adopted to the needs of the
communication system [3].
Then a parallel concatenated convolutional encoder was employed because it is well known
that theses encoders together with a turbo decoder provide good error-correcting performance
for AWGN channels without ISI. However a first approach of successive equalization and turbo
decoding revealed that the performance is highly dependent on the underlying ISI channel and
significantly decreased for worse ISI channels. In a receiver which combines turbo equalization
and turbo decoding it is necessary to perform inner iterations in order to decode the outer
code resulting in a large complexity. Despite its high complexity the performance of this
approach could not exceed that of the approach where a conventional convolutional code and
a differential precoder was used. This and the fact that the problem of convergence and
stability is not sufficiently solved let this scheme appear to be a suboptimal choice. In this
context it is noticeable that publications in which results on the field of turbo equalization
are summarized, combined approaches including turbo decoding are only mentioned as a side
note [18]. In fact reading those papers suggests that most recent research focuses on ways
to make turbo equalization more practical by reducing complexity (for example by including
suboptimal equalization techniques) instead of increasing complexity by introducing more
feedback loops in the receiver.
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