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Abstract
The theme of this thesis is the analysis and design of error-correcting codes that are
suitable for high-speed fiber-optical communication systems. In particular, we consider
two code classes. The codes in the first class are protograph-based low-density parity-
check (LDPC) codes which are decoded using iterative soft-decision decoding. The
codes in the second class are generalized LDPC codes with degree-2 variable nodes—
henceforth referred to as generalized product codes (GPCs)—which are decoded using
iterative bounded-distance decoding (BDD). Within each class, our focus is primarily on
spatially-coupled codes. Spatially-coupled codes possess a convolutional structure and
are characterized by a wave-like decoding behavior caused by a termination boundary ef-
fect. The contributions of this thesis can then be categorized into two topics, as outlined
below.

First, we consider the design of systems operating at high spectral efficiency. In particu-
lar, we study the optimization of the mapping of the coded bits to the modulation bits for
a polarization-multiplexed system that is based on the bit-interleaved coded modulation
paradigm. As an example, for the (protograph-based) AR4JA code family, the trans-
mission reach can be extended by roughly up to 8% by using an optimized bit mapper,
without significantly increasing the system complexity. For terminated spatially-coupled
codes with long spatial length, the bit mapper optimization only results in marginal per-
formance improvements, suggesting that a sequential allocation is close to optimal. On
the other hand, an optimized allocation can significantly improve the performance of tail-
biting spatially-coupled codes which do not possess an inherent termination boundary.
In this case, the unequal error protection offered by the modulation bits of a nonbinary
signal constellation can be exploited to create an artificial termination boundary that
induces a wave-like decoding for tail-biting spatially-coupled codes.

As a second topic, we study deterministically constructed GPCs. GPCs are particu-
larly suited for high-speed applications such as optical communications due to the signifi-
cantly reduced decoding complexity of iterative BDD compared to iterative soft-decision
decoding of LDPC codes. We propose a code construction for GPCs which is sufficiently
general to recover several well-known classes of GPCs as special cases, e.g., irregular
product codes (PCs), block-wise braided codes, and staircase codes. Assuming trans-
mission over the binary erasure channel, it is shown that the asymptotic performance
of the resulting codes can be analyzed by means of a recursive density evolution (DE)
equation. The DE analysis is then applied to study three different classes of GPCs:
spatially-coupled PCs, symmetric GPCs, and GPCs based on component code mixtures.

Keywords: Bit-interleaved coded modulation, bit mapper, bounded-distance decoding,
braided codes, density evolution, generalized low-density parity-check codes, generalized
product codes, spatial coupling, staircase codes.
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CHAPTER 1

Background

When requesting a website, most internet users are probably unaware that the digital
data is modulated onto a light source and transmitted over thousands of kilometers
in an optical waveguide, a so-called optical fiber, at some point on the way from the
remote server to their home computer or mobile device. In fact, more than 99% of the
global intercontinental traffic is carried over optical fiber and such “long-haul” fiber-
optical communication systems are the key enabler of high-speed internet data transfer
connecting cities, countries, and continents [1].

There is currently a significant interest in determining the ultimate capacity limits
of fiber-optical systems [2–4] and developing practical schemes that can achieve these
limits [5–7]. Error-correcting codes are an integral part of communication systems that
operate close to capacity. In theory, the proper use of such codes allows the system to
achieve an arbitrarily low error rate if the data rate is chosen below the capacity [8].
In practice, however, operating at lower error rates and closer to capacity comes at the
expense of an increased system complexity and communication delay. Code design thus
requires assessment of nontrivial trade-offs between performance, complexity, and delay.

Fiber-optical communication systems operate at very high data rates that can exceed
several hundreds of Gbit/s. At such high speeds, one of the main challenges is to keep
the decoding complexity at an acceptable level. For example, the amount of processing
power that can be spent on decoding each bit is severely limited [6]. Fiber-optical com-
munication systems also require extremely low error rates below 10−15 [6]. On the other
hand, communication delay caused by coding is typically not an issue. This implies that
the use of codes with long block lengths is relatively unproblematic. As an example, the
code proposals in [9, 10] have effective block lengths in the order of 106 bits. Assuming
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Chapter 1 Background

a transmission rate of 100 Gbit/s, the corresponding delay is then only 20µs. This is
negligible compared to the propagation delay caused by the light traversing hundreds or
even thousands of kilometers of fiber.1 In a nutshell, the challenge is therefore to devise
coding schemes that offer very low error rates with affordable decoding complexity, while
potentially using relatively long block lengths.
Current state-of-the-art codes are defined on graphs and decoded iteratively by passing

messages along the edges of the graph [11, 12]. In this thesis, our focus is primarily on
spatially-coupled codes. The first instance of spatially-coupled codes are the low-density
parity-check (LDPC) convolutional codes introduced in [13], which are now also referred
to as spatially-coupled LDPC codes. It was later realized in [14] that these codes have
much better performance than conventional regular LDPC codes [15]. The reason for
this phenomenon is a wave-like decoding behavior caused by a termination boundary
effect. Several different proofs now exist for the fact that spatially-coupled LDPC codes
can operate arbitrarily close to the capacity of a variety of different communication
channels [16, 17]. Other instances of spatially-coupled codes include braided codes [18]
and staircase codes [9], which have been shown to offer outstanding performance using
very low-complexity decoding algorithms. In this thesis, we address several challenges
that arise in the analysis and design of spatially-coupled codes when used in fiber-optical
communication systems.
We start by studying the design of spectrally-efficient systems. Fiber-optical systems

traditionally employ digital modulation techniques that are rather wasteful with the
available frequency spectrum. As an example, switching the light source on and off
according to the digital data stream—referred to as on-off keying (OOK)—is highly
inefficient from a spectral viewpoint. To keep up with the increasing data rate demands
of current applications, and to enable innovative broadband technologies in the future, it
becomes more and more apparent that next-generation fiber-optical systems need to use
the available spectrum more efficiently. To improve the spectral efficiency over OOK, the
data can be encoded into multiple amplitude and/or phase levels of the optical carrier.
A further increase in spectral efficiency can be achieved by utilizing both polarizations
of the optical light, which is referred to as polarization-multiplexed (PM) transmission.
PM signals can be represented as points in a four-dimensional signal space, also referred
to as a signal constellation [19]. In Papers A and B, we study how to combine such
signal constellations with error-correcting codes. In Paper A, we consider LDPC codes
which are defined via protographs [20]. Protograph-based LDPC codes allow for an
efficient hardware implementation, which makes them attractive candidates for high-
speed application such as fiber-optical communications [6].
Spatially-coupled LDPC codes can also be constructed using protographs. An in-depth

analysis focusing exclusively on spatially-coupled LDPC codes for spectrally-efficient sys-
tems is presented in Paper B. In order to highlight one of the contributions of this thesis,
we first note that the termination boundary that induces the wave-like decoding behav-

1As a rule of thumb, light takes approximately 5 ms to propagate through 1000 kilometer of fiber.
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ior for spatially-coupled LDPC codes comes at the price of a so-called rate loss, i.e., a
larger redundancy overhead, compared to “uncoupled” regular LDPC codes. This rate
loss can be avoided by considering a tail-biting termination scheme. The resulting codes
are referred to as tail-biting spatially-coupled LDPC codes. Unfortunately, by default,
these codes behave essentially the same as regular LDPC codes because the absence of
an explicit termination boundary prevents a wave-like decoding behavior. One of the
main findings of this work is that the different modulation bits of a nonbinary signal
constellation can be exploited to create an artificial termination boundary. This artifi-
cial boundary is sufficient to initiate a decoding wave and can significantly improve the
performance of “rate-loss-free” tail-biting spatially-coupled LDPC codes.

As a second topic, we investigate so-called generalized product codes (GPCs). GPCs
are extensions of classical product codes (PCs) [21]. PCs are one of the first examples of
the idea to build long and powerful codes from shorter component codes. In particular,
each coded bit in a PC is protected by two component codes, where the coded bits are
assumed to be arranged in a rectangular array. This assumption is relaxed for GPCs
which allows the array shape to be arbitrary. GPCs are very appealing for high-speed
applications such as fiber-optical communication systems. The reason is rooted in their
low-complexity decoding algorithm, which is based on iteratively decoding the component
codes. When compared to message-passing decoding of LDPC codes, this approach can
result in significant complexity advantages [9]. Indeed, PCs are already implemented
in certain communication standards for fiber-optical systems [22]. Moreover, several
constructions of GPCs, e.g., braided [10] and staircase codes [9], have been recently
proposed and investigated for such systems.

GPCs are the main focus in Papers C–F (although we already consider the application
of GPCs for the bit mapper optimization in Paper B as a side application). In Paper C,
we study parameter optimization for staircase codes. This work is inspired by the work
in [23], where staircase code parameters are found using a simulation-based approach.
The parameter optimization in Paper C on the other hand is based on density evolution
(DE). DE is an analytical tool to analyze the behavior of codes under iterative decoding
in the limit of infinite block lengths [24]. However, the DE analysis used in Paper C does
not directly apply to staircase codes. Rather, we observed that staircase codes share
some structural similarities with the spatially-coupled PC ensemble defined in [25]. A
code ensemble is a collection or set of codes, typically defined via suitable randomized
connections in the underlying graphical representation. The approach used in Paper C
is therefore only heuristically motivated. While it appears to work well, it raises the
question whether an asymptotic DE analysis is possible by directly targeting specific
deterministic GPCs such as staircase codes.

This question is answered positively in Paper D, which represents the main theoretical
contribution of this thesis. In Paper D, we propose a parametrized family of deterministic
GPCs that includes staircase codes (and also many other code classes) as special cases.
Based on the theory of inhomogeneous random graphs [26], we provide a DE analysis that
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characterizes the asymptotic code performance. It is important to stress that the analysis
does not rely on the definition of a code ensemble but directly applies to sequences
of deterministically constructed codes. The resulting DE analysis can be useful for a
variety of different applications. For example, it can be used to predict and compare the
waterfall performance of different GPCs, optimize code parameters for particular classes
of GPCs, find suitable windowed-decoding schedules for spatially-coupled PCs, or design
new classes of GPCs. Papers E and F are based on the theoretical tools derived in Paper
D, where we apply the theory to design and study deterministically constructed GPCs
in more detail.

1.1 Thesis Organization
The format of this thesis is a so-called collection of papers. It is divided into two parts,
where the first part serves as an introduction to the appended papers in the second part.
The remainder of the introductory part of this thesis is structured as follows. In

Chapter 2, we provide an introduction to fiber-optical channel modeling and describe
the origin of the channel models that are used in the appended papers. In Chapter
3, we give a brief introduction to bit-interleaved coded modulation (BICM), which is a
pragmatic way to combine signal constellations with error-correcting codes to operate at
high spectral efficiencies. In Chapter 4, we review some basic background about LDPC
codes. In particular, we discuss iterative belief propagation (BP) decoding, DE, and
protograph-based constructions including spatially-coupled LDPC codes. The content
of this chapter is mainly relevant for Papers A and B, where the reader is assumed
to be somewhat familiar with LDPC codes and iterative decoding. In Chapter 5, we
then discuss GPCs. Starting from the concept of generalized low-density parity-check
(GLDPC) codes, we give several examples of well-known classes of GPCs and discuss
the decoding via iterative bounded-distance decoding (BDD). We also briefly review two
approaches to perform an asymptotic analysis for GPCs. Finally, the main conclusions
from the appended papers are summarized in Chapter 6, where we also discuss future
work.

1.2 Notation
The following notation is used in the introductory part of this thesis.

• Vectors and matrices are typeset in bold font by lowercase letters a and capital
letters A, respectively.

• The transpose of a matrix is denoted by ( · )ᵀ.

• Z, N0, N, R, and C denote the set of integers, nonnegative integers including
zero, nonnegative integers excluding zero, real numbers, and complex numbers,
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respectively.

• The cardinality of a set A is denoted by |A|.

• Random variables are denoted by capital letters X and their realizations by lower-
case letters x.

• The probability density function (PDF) of a random variable X is denoted by
fX(x). The PDF of a random variable Y conditioned on the realization of another
random variable X is denoted by fY |X(y|x).

• Expectation is denoted by E[ · ].

• δ(t) denotes Dirac’s delta function while δ[k] denotes the Kronecker delta.

• Convolution is denoted by �.

• The imaginary unit is denoted by  ,
√
−1.

• Complex conjugation is denoted by ( · )∗.

Notational Inconsistencies

The reader should be aware of the following inconsistencies in the notation across the
appended papers and the thesis introduction.

• The variable n is used to denote the block length of an LDPC code and GLDPC
code in Papers A, B, and the thesis introduction. It is used for different purposes in
Papers C–F, e.g., it denotes the length of a Bose–Chaudhuri–Hocquenghem (BCH)
code in Paper C.

• The block size of staircase codes and braided codes is denoted differently in different
papers and the thesis introduction. For example, for staircase codes, the block size
is denoted by a in Paper C, E and the thesis introduction, while it is denoted by d
in Paper F. In Paper D, the block size is denoted by ni, where the index i indicates
the position in the Tanner graph.

• The error-correcting capability of a component code is denoted by t in Papers B,
C, F, and the thesis introduction, while it is denoted by t in Papers D and E. The
variable t is also used as a time index for the signals in Papers A, B, and Chapter
2 of the thesis introduction.

• The matrix η that defines the Tanner graph connectivity of the deterministic GPC
construction is typeset in normal weight font as η in Paper E.

• The two light polarizations are denoted by a and b in the thesis introduction, while
we use x and y in Papers A and B.
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• The acronym “SC” is used for “spatially-coupled” in Papers A, B, and F, while it
is used for “staircase code” in Paper E.

• The acronym “CN” is used for “constraint node” in Papers D, E, F, and the thesis
introduction, while it is used for “check node” in Papers A and B.

• The spatially-coupled code ensemble in [27] is referred to as a “SC-GLDPC ensem-
ble” in Papers B and C, while it is referred to as a “spatially-coupled PC ensemble”
in Paper F and the thesis introduction.
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CHAPTER 2

Fiber-Optical Channel Modeling

A channel model is a mathematical description of the propagation medium and possi-
bly also includes certain elements of the transmitter and receiver (e.g., filters). In the
appended papers, we assume “traditional” channel models, in particular the (discrete
and memoryless) additive white Gaussian noise (AWGN) channel. This chapter is in-
tended to put this channel model into the context of fiber-optical communications. It
should also give the reader a broader picture about optical channel modeling in general.
Other channel models that are mainly relevant for iterative hard-decision decoding are
discussed in Chapter 5.

We are concerned with coherent, long-haul (i.e., distances exceeding 2000 km) data
transmission over single-mode fibers (SMFs). The main challenge from a channel model-
ing perspective is a nonlinear effect caused by the relatively high signal power in relation
to the small cross-section area of the fiber. Without going further into the physical de-
tails, a useful way to think about this effect is to imagine that the presence of an optical
signal can compress the fiber material (in most cases silica) to such a degree that its
propagation properties, in particular the refractive index, are changed in a nonlinear
way [28, p. 18].

The chapter is structured as follows. In Section 2.1, we review the AWGN channel
model. In Section 2.2, we discuss the nonlinear Schrödinger equation (NLSE) which is
a deterministic channel model for an SMF. Multi-span links consisting of several SMFs
including optical amplification elements are covered in Section 2.3. PM systems are
discussed in 2.4. Lastly, linear modulation and receivers are described in Section 2.5.
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2.1 The Additive White Gaussian Noise Channel
Consider the discrete and memoryless (complex-valued) AWGN channel model

yk = xk + nk (2.1)

for k ∈ Z, where xk ∈ C denotes an information symbol, nk is a realization of a zero-mean
complex Gaussian random variable Nk with E[NkN∗k′ ] = N0δ[k − k′] and power spectral
density (PSD) N0, and yk ∈ C is the channel output or simply the observation. The
channel from xk to yk is characterized by the conditional PDF

fYk|Xk(yk|xk) = 1
πN0

exp
(
−|yk − xk|

2

N0

)
. (2.2)

The primary goal of this section is to motivate (2.1) in the context of fiber-optical com-
munication systems. In particular, our target application is coherent, long-haul data
transmission over SMFs. The validity of (2.1) in this case depends heavily on the as-
sumed system parameters, e.g., the type of dispersion-compensation scheme that is being
used.

2.2 The Nonlinear Schrödinger Equation
The starting point for fiber-optical channel modeling is the NLSE, which can be derived
from Maxwell’s equations under some assumptions that are appropriate for SMFs [29].
The NLSE is a partial differential equation that defines the input–output relationship
for optical baseband signals1 propagating through SMFs.
Let us first introduce a continuous-time parameter t ∈ R and a distance parameter

0 ≤ z ≤ L that denotes the propagation distance of the signal from the beginning of the
fiber, where L is the total length of the fiber. The baseband signal of interest is a function
of two parameters, denoted by v(t, z). We define the input and output signals as x(t) ,
v(t, 0) and y(t) , v(t, L), i.e., x(t) is the signal launched into the fiber at z = 0, and y(t)
is the signal received after propagating through an SMF of length L. This is conceptually
illustrated in Fig. 2.1. Before we continue, we also define the instantaneous signal power
P (t, z) , |v(t, z)|2 and the power profile P (z) , limT→∞(

∫ T
−T P (t, z) dt)/(2T ), where

P = P (0) is the power of the input signal.
The NLSE accounts for signal attenuation, chromatic dispersion, and nonlinear effects

in an SMF and can be written as
∂v(t, z)
∂z

= −α2 v(t, z)− β2
2
∂2v(t, z)
∂t2

+ γv(t, z)|v(t, z)|2, (2.3)

where α is the attenuation coefficient, β2 is the chromatic dispersion coefficient, and
γ is the nonlinear Kerr parameter. If we take into account only the first term on the
1Often called “slowly varying envelope” in the literature. The carrier frequency is assumed to be the
equivalent of a 1550 nm light wave, corresponding to roughly 193.4 THz.
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y(t)single mode fiberx(t)
z

0 L

t

v(t, 0)

t

v(t, L)nonlinear Schrödinger equation

Figure 2.1: Conceptual representation of the signal evolution through an SMF. The NLSE
describes the relationship between the input signal x(t) = v(t, 0) and the output
signal y(t) = v(t, L).

right-hand side of (2.3), one obtains v(t, z) = exp(−αz/2)v(t, 0) as a solution2, i.e.,
we immediately see that the signal amplitude in an SMF decays exponentially with
the propagation distance. By defining a renormalized version of v(t, z) as u(t, z) ,
exp(αz/2)v(t, z) and substituting it into (2.3), one obtains an alternative and somewhat
simpler version of the NLSE as [29, eq. (4)]

∂u(t, z)
∂z

= −β2
2
∂2u(t, z)
∂t2

+ γe−αzu(t, z)|u(t, z)|2. (2.4)

In general, there are no closed-form solutions to the NLSE and one has to resort to
numerical methods in order to obtain a solution. In the following, we briefly describe
one of the most widely used numerical methods to solve (2.4), namely the split-step
Fourier method (SSFM). Conceptually, we start by discretizing the spatial dimension
and subdividing the entire fiber of length L into small segments of length ∆, where
M = L/∆ ∈ N is the total number of segments. For the i-th segment, 1 ≤ i ≤ M , the
input signal is denoted by u(t, (i−1)∆) and the corresponding output signal by u(t, i∆).
It is then assumed that an approximate solution to obtain u(t, i∆) based on u(t, (i−1)∆)
is given by

u(t, i∆) ≈ h(t,∆) �
(
u(t, (i− 1)∆)eγLeff(∆)|u(t,(i−1)∆)|2

)
, (2.5)

where h(t, z) = exp
(
t2/(2β2z)

)
/
√
2πβ2z is the impulse response of a linear filter rep-

resenting dispersive effects and

Leff(z) ,
∫ z

0
e−αz

′
dz′ = 1− exp(−αz)

α
(2.6)

is referred to as the effective nonlinear length with Leff(z) ≤ z and Leff(z)→ z as α→ 0.
The reasoning behind (2.5) is that over a short segment of length ∆� L, the linear (i.e.,
dispersive) and nonlinear effects act almost independently of one another.
2Recall that the solution of ∂f(z)/∂z = cf(z) is given by f(z) = exp(cz)f(0).
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α, β2, γ, L

x(t) y(t)

(a) Symbolic representation
of an SMF

repeat M times

x(t) y(t)

eγLeff(∆)| · |2

h(t, ∆)

e−α∆/2

(b) Approximate mathematical model via
the SSFM

Figure 2.2: Illustrations for an SMF. The notation | · |2 in (b) stands for the instantaneous
power of the signal that arrives at the corresponding multiplication block as indi-
cated by the dashed, gray line.

Using this assumption, an approximate solution for an entire SMF of length L is given
by repeatedly applying (2.5), starting with the first segment where i = 1, i.e., with the
input signal u(t, 0) = x(t). The SSFM step in (2.5) is given in terms of the normalized
signal u(t, z). In order to incorporate the signal attenuation, the output signal u(t, i∆) is
multiplied by exp(−α∆/2) to obtain v(t, i∆) after each step. Fig. 2.2 shows the resulting
numerical method in terms of a block diagram. In the figure, the notation | · |2 stands
for the instantaneous power of the signal that arrives at the corresponding multiplication
block (e.g., |x(t)|2 in the first segment, |u(t,∆) exp(−α∆/2)|2 in the second, and so on).
It has been shown that the above method converges to the true solution for ∆→ 0 [28,
p. 42]. Practical guidelines on the choice of the segment size are developed in [30].
The name of the method originates from the fact that the nonlinear phase-shift op-

eration and the linear filtering in Fig. 2.2(b) are commonly carried out in the time and
frequency domain, respectively. Therefore, one forward and one inverse Fourier trans-
form have to be performed per segment. In computer implementations, a sampled version
of the baseband signal u(t, z) (or v(t, z)) is considered which facilitates the application
of the computationally efficient fast Fourier transform. Such an implementation is for
example provided in [28, App. B].

2.3 Optical Amplification and Noise
The numerical value of the attenuation coefficient α is typically between 0.2 and 0.4
dB/km. Assuming α = 0.2 dB/km and a transmission distance of L = 2000 km, the input
signal would be attenuated by 400 dB implying that y(t) is practically zero [2, Sec. IX-
B]. It is therefore necessary to amplify the signal along the transmission path, which
invariably introduces noise into the system.
We briefly discuss one common type of amplification, referred to as lumped ampli-

fication, in terms of its effect on the power profile of the signal and the type of noise
that is introduced. Modeling the power profile is important due to the dependency of the
nonlinear effect on the instantaneous signal power. Thus, one cannot simply ignore atten-
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0 Lsp 2Lsp

P

z

P (z)

b b b

∝ e−αz

SMF SMF
EDFA EDFA

(a) Power profile as a function of trans-
mission distance

repeat M times (1 ≤ j ≤ M)

eγLeff(∆)| · |2

h(t, ∆)

e−α∆/2 G ni(t)

repeat Nsp times (1 ≤ i ≤ Nsp)

(b) Block diagram for a multi-span link

Figure 2.3: Illustrations for a fiber-optical communication link including a lumped amplifica-
tion scheme and noise.

uation effects and make a link budget analysis as is common for linear channels. Details
about the underlying physical aspects of optical amplification can be found in standard
textbooks on optical data transmission, e.g., [31, Ch. 6]. It should, however, be pointed
out that the optical amplifier noise is in fact the dominant source of noise in long-haul
systems. This means that noise from other sources, e.g., thermal noise from electrical
components, is negligible in comparison and can therefore be ignored [2, Sec. IX-A].

To account for amplification and noise, the NLSE (2.3) can be extended by inserting
a gain profile g(z) and a complex-valued stochastic process w(t, z), resulting in

∂v(t, z)
∂z

= −α− g(z)
2 v(t, z)− β2

2
∂2v(t, z)
∂t2

+ γv(t, z)|v(t, z)|2 + w(t, z). (2.7)

Equation (2.7) is referred to as the stochastic nonlinear Schrödinger equation (sNLSE)
[32]. We start by discussing the gain profile g(z) and its effect on the power profile of
the signal v(t, z), ignoring all other effects (including w(t, z)). Signal amplification is
applied periodically, in the sense that the entire transmission distance 0 ≤ z ≤ L is
split up into spans of length Lsp varying between 60 and 120 km, where Nsp = L/Lsp ∈
N denotes the total number of spans. For lumped amplification, an optical amplifier,
most often an erbium-doped fiber amplifier (EDFA) [2, Sec. IX-B], is inserted after each
span, where the amplifier gain G matches the power loss of the signal in that span, i.e.,
G = eαLsp . In (2.7), this is accounted for by setting g(z) = αLsp

∑Nsp
i=1 δ(z − iLsp). The

corresponding power profile is schematically illustrated in Fig. 2.3(a). It can be seen
that the signal power decreases exponentially according to the loss coefficient α and is
periodically restored to the input power P after each span.
Next, we discuss the noise that is generated by optical amplification through a process

called amplified spontaneous emission (ASE). Noise can be thought of as being added to
the signal at discrete locations zi , iLsp, 1 ≤ i ≤ Nsp. Thus, if we think about z−i and z+

i

as the locations right before and after the amplifiers, we have v(t, z+
i ) = Gv(t, z−i )+ni(t),
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where ni(t) is the additive noise originating from the i-th amplifier [33, p. 36]. It has been
experimentally verified that ASE noise can be accurately modeled as circularly symmet-
ric complex Gaussian [2, p. 667] and therefore it remains to specify the autocorrelation
function of ni(t), where processes from different amplifiers are uncorrelated. The most
common assumption is white Gaussian noise, i.e., E[Ni(t)N∗j (t′)] = N`δ(t − t′)δ[i − j],
where N` denotes the noise PSD per amplifier. (The index ` refers to the lumped ampli-
fication type.) We further set N0 = NspN`, which one might think of as the cumulative
PSD at the end of the transmission link for Nsp amplifiers. Since temporally white noise
has infinite instantaneous power, this assumption would, however, lead to infinite phase
rotations due to the nonlinear effect. In reality, the noise power is of course finite, and
the PSD of ASE noise is comparable to the gain spectrum of the amplifier. For an ide-
alized EDFA that provides flat gain over a certain frequency range Wn, one would then
replace δ(t− t′) with δWn(t− t′) where δWn(x) = Wnsinc(Wnx) [33]. Further limitations
of the optical bandwidth can occur due to the insertion of optical bandpass filters and/or
reconfigurable optical add-drop multiplexer along the transmission line [2].
Based on the previous description, a block diagram of a continuous-time model for a

multi-span transmission link with lumped amplification is depicted in Fig. 2.3(b). The
model consists of the concatenation of the deterministic model for an SMF based on the
SSFM (cf. Fig. 2.2(b)) with a multiplicative gain factor and additive noise representing
the optical amplifier. For completeness, we also indicate how the additive noise terms
ni(t) can be related to w(t, z) in (2.7). Note that if we neglect all terms on the right-hand
side of (2.7) except w(t, z), we have ∂v(t, z)/∂z = w(t, z) and integrating this equation
leads to

v(t, z) = v(t, 0) +
z∫

0

w(t, ξ) dξ = v(t, 0) + n(t, z). (2.8)

Here, n(t, z) represents the noise that is added to the signal up to a certain distance z.
For lumped amplification, one may set w(t, z) =

∑Nsp
i=1 ni(t)δ(z− iLsp) [29, p. 84], so that

n(t, z) =
∑bz/Lspc
i=1 ni(t) corresponds the addition of all ni(t) up to distance z (the upper

integral limit in (2.8) is interpreted as z+).

2.4 Polarization Multiplexing

In addition to the amplitude and phase (or, alternatively, the in-phase and quadrature
component), data may also be encoded using the polarization of the light source. Systems
where both polarizations of the light are used to transmit data are referred to as PM.
For PM transmission, the sNLSE equation can be further extended by considering the
vector signal v(t, z) = (va(t, z), vb(t, z))ᵀ, where the indices indicate the two polarizations
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a and b.3 The resulting equation is referred to as the Manakov equation which includes
amplifier noise, gain, and loss terms. It is given by [34, p. 8]

∂v(t, z)
∂z

= −α− g(z)
2 v(t, z)− β2

2
∂2v(t, z)
∂t2

+ γv(t, z)‖v(t, z)‖2 +w(t, z), (2.9)

wherew(t, z) = (wa(t, z), wb(t, z))ᵀ are two (independent) stochastic processes describing
the ASE noise generated in both polarizations. The major difference between (2.9) and
(2.7) is that (2.9) models the nonlinearity that is due to the sum of the instantaneous
power in both polarizations ‖v(t, z)‖2 = Pa(t, z)2 + Pb(t, z)2. We should mention that
(2.7) ignores the fact that amplifier noise is always generated “in two polarizations”, i.e.,
even if we assume one of the two signals in v(t, z) to be zero, technically the amplifier
noise in that polarization still contributes via (2.9) through the fiber nonlinearity.

For simplicity, we ignore polarization-specific impairments. This includes for example
polarization mode dispersion, which would cause different group velocities of the signals
in polarization a and b caused by natural imperfections and asymmetries of the fiber
cross-section area.

2.5 Linear Pulse Modulation and Linear Receiver
So far, we have discussed models for waveform channels. In order to arrive at a discrete-
time channel model, we have to make some assumptions about the type of modulation
that is used in the transmitter and the type of receiver structure. The statistics of the
resulting discrete-time channel may depend heavily on these assumptions.

In Fig. 2.4, a generic block diagram for a PM transmission scheme is shown. We
assume that the transmitters (TX) employ a linear pulse modulation according to xa(t) =∑
k xa,kp(t−kTs) for polarization a and similarly for polarization b, where Ts is the symbol

period. The evolution of the PM signal is then described by the Manakov equation (2.9),
where va(t, 0) = xa(t) and vb(t, 0) = xb(t). The received signal in each polarization is
assumed to be processed according to a linear receiver. In particular, for polarization a,
it is assumed that ya(t) = va(t, L) is passed through an equalizer, a pulse-matched filter,
and a sampler, in order to obtain ya,k′ = ya(t) � h(t,−L) � p(−t)|t=k′Ts and similarly
for polarization b.

Characterizing the statistical relationship between the transmitted symbols and re-
ceived samples is a challenging task due to the complicated interaction of the signal with
itself, the noise, and the signal in the orthogonal polarization. Here, we focus on optical
transmission links without any inline dispersion compensation, which are referred to as
non-dispersion-managed or uncompensated transmission links. Recently, there has been
a substantial amount of work on this type of transmission link with the goal to find such

3This nonstandard notation for the polarizations is an attempt to avoid confusion with the transmitted
and received signals.
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Figure 2.4: Block diagram of the PM transmission scheme considered in Papers A and B.

a statistical relationship [35–38].4
In [35], it is shown that the discrete-time channel for non-dispersion-managed links is

well modeled by a circularly symmetric complex additive Gaussian channel including a
complex scaling factor. In the derivation of the model, the assumption is that dispersive
effects are dominant (i.e., the symbol rate 1/Ts is high enough) and that the nonlinear
effects are not too strong. The complex scaling accounts for a constant phase offset as
well as the fact that part of the signal is converted into noise-like interference through
the interaction between the dispersive and nonlinear effects. For simplicity, it is then
assumed that this nonlinear noise is additive, Gaussian, and uncorrelated (both in time
and across polarizations). A discrete-time channel model in polarization a is then given
according to

ya = ζxa,k + na,k + ña,k, (2.10)

where ζ ∈ C is a complex scaling factor, na,k corresponds to the linear ASE noise with
E[Na,kN∗a,k] = N0/Ts = PASE, ña,k accounts for nonlinear noise with E[Ña,kÑ∗a,k] = ηP 3,
and the same transmit power P is assumed for the signals in both polarizations. The
parameter η (and hence the nonlinear noise variance) is a function of the link parameters
and the symbol time, i.e., η = f(α, β2, γ, Lsp, Nsp, Ts) [35, eq. (15)], and |ζ|2 = 1−|η|P 2.
The main difference with respect to the “conventional” discrete-time additive Gaussian

channel in (2.1) is that the signal-to-noise ratio (SNR) (defined as the ratio of the input
power to the additive noise power) is not sufficient to characterize the operating point
of the channel but rather one needs to consider the pair (P, PASE) or, more practically
relevant, the pair (P,L). This parameter pair leads in turn to both a linear and a
nonlinear noise variance based on which an effective SNR can be computed.

4This case is also of high practical relevance and according to [36], “the current consensus is that
green-field installations, as well as major overhauling and refurbishing of existing links, should adopt
uncompensated transmission.”
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CHAPTER 3

Bit-Interleaved Coded Modulation

In this chapter, we provide a brief introduction on how to design systems that reliably
transmit data at high spectral efficiencies. Spectrally-efficient communication can be
achieved in practice by combining error-correcting codes with nonbinary signal constel-
lations, which is commonly referred to as coded modulation (CM). We focus on BICM,
which is a pragmatic approach to CM and often implemented in practice, due to its
inherent simplicity and flexibility.

We start by outlining the main principles behind CM in Section 3.1. In Section 3.2, we
explain the building blocks of a BICM system. We also cover the parallel independent
channel model for BICM which is used for the bit mapper optimization problem studied
in Papers A and B.
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3.1 Introduction to Coded Modulation
Consider again the discrete memoryless AWGN channel in (2.1). The goal is to reliably
transmit data at high spectral efficiencies over this channel. To do so, one can formally
define an encoder E : {0, 1}d → Cc, which maps a vector of d information bits to a
codeword in the code Cc ⊂ CN . Each codeword is a complex vector of length N and its
components serve as the input for N consecutive uses of the AWGN channel. Similarly,
one can define a decoder D : CN → {0, 1}d, which maps a vector of N channel observa-
tions back to a sequence of d estimated bits. Assuming equally likely information bits,
the communication rate (measured in [bits/complex symbol]) of such a system is given
by κ = log2(|Cc|)/N = d/N . Notice that the communication rate of the discrete-time
channel is intimately related to the spectral efficiency of the continuous-time channel (in
[bits/s/Hz]) via the bandwidth of the pulse shape p(t) and the symbol time Ts. Shannon
proved that all rates up to the channel capacity

C = log2(1 + SNR) (3.1)

are achievable, in the sense that there exists an encoder/decoder pair that can provide
an arbitrarily small error probability as long as N →∞ [39].
While Shannon’s proof provides communication engineers with an invaluable bench-

mark, the problem of designing practical encoders and decoders that operate close to
capacity and are implementable with reasonable complexity was not directly addressed
by Shannon. In practical systems, the channel input xk commonly does not take on
arbitrary complex values, but is constrained to a discrete signal constellation X ⊂ C.
Given this premise, it is useful to introduce a soft dividing line between two different
operating regimes for this channel. This dividing line is at κ = 2, where κ ≤ 2 is referred
to as the power-limited regime and κ > 2 as the bandwidth-limited regime [40]. Roughly
speaking, in the power-limited regime, it is sufficient to consider a binary modulation
independently in the real and imaginary part (e.g., Gray-labeled quadrature phase-shift
keying (QPSK) according to X = {1 + , 1− ,−1 + ,−1− } and scaled by

√
P/2), in

combination with binary error-correcting codes in order to operate close to the capacity.
On the other hand, spectrally-efficient communication requires the use of signal constel-
lations with cardinality larger than 4, which are referred to as nonbinary or higher-order1
constellations. By invoking the capacity formula, it follows directly that operating at high
spectral efficiencies (where κ > 2) requires the signal power to be at least three times
the noise power. In other words, spectrally-efficient communication requires a reasonably
high SNR.
Devising practical encoder/decoder pairs where xk is constrained to a higher-order

signal constellation is commonly referred to as CM design. There exist several different
approaches, for example trellis coded modulation [41], CM with nonbinary codes [42],
1One may also classify complex constellations with 4 points as “higher-order”, as long as they cannot
be viewed as two independent binary modulations per real and complex dimension.
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Figure 3.1: Two examples of higher-order signal constellations with 16 points.

multilevel coded modulation [43], or BICM [44]. Our focus here is on BICM in combina-
tion with (binary) LDPC codes, which is one of the most popular capacity-approaching
coding schemes for achieving high spectral efficiency, due to its simplicity and flexibil-
ity [45]. BICM is employed as the de facto standard in many wireless communication
standards and has also been studied by many authors for fiber-optical communication
systems, see, e.g., [46] or [47] and references therein.

3.2 BICM System Model

In the following, the transmitted symbols xk in each time instant k are assumed to take
on values from a discrete signal constellation X ⊂ C with |X | points, where |X | is a
power of two. Furthermore, each point in the constellation is assumed to be labeled with
a unique binary string of length m = log2 |X |, where bi(x), 1 ≤ i ≤ m, denotes the i-th
bit in the binary string assigned to x ∈ X (counting from left to right). Two examples
of signal constellations with |X | = 16 points are shown in Fig. 3.1 and referred to as
16-QAM and (8, 8)-APSK.

We now describe the main components of a BICM system. First, consider the block
diagram shown in Fig. 3.2(a), where the modulo 2 addition of di,k ∈ {0, 1} and multi-
plication by d̄i,k = (−1)di,k are explained further below and can be ignored for now. At
each time instant, the modulator Φ takes m bits bi,k, 1 ≤ i ≤ m, and maps them to one
of the constellation points according to the binary labeling of the signal constellation.
At the receiver, the demodulator Φ−1 computes soft reliability information about the
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transmitted bits in the form of the log-likelihood ratios (LLRs)

li,k , log
fYk|Bi,k(yk|0)
fYk|Bi,k(yk|1) = log

∑
x∈Xi,0 fYk|Xk(yk|x)∑
x∈Xi,1 fYk|Xk(yk|x) , (3.2)

where Xi,u , {x ∈ X : bi(a) = u} is the subconstellation where all points have the bit u
at the i-th position of their binary label. The LLR is a function of the observation and,
since the observation is a random variable, the LLR is also a random variable.
One way to interpret the setup depicted in Fig. 3.2(a) is as follows. The concatenation

of the modulator Φ, the AWGN channel, and demodulator Φ−1 establishes a binary
interface for the complex-valued AWGN channel. It is useful to imagine transmitting
data over a set of m parallel binary-input continuous-output channels, or simply bit
channels, where one may view the conditional distribution of the LLR fLi,k|Bi,k( · | · ),
1 ≤ i ≤ m, as a bit channel. In the following, a bit channel fL|B(l|b) is called symmetric
if fL|B(l|0) = fL|B(−l|1) and referred to as an LLR channel if fL|B(l|0)el = fL|B(l|1).
The terminology is used to emphasize that, if the second condition is fulfilled, the output
of the channel corresponds to a “true” LLR. This is important because, in practice, low-
complexity approximations of (3.2) are often considered, and the resulting bit channel in
that case is not necessarily an LLR channel [48, Ch. 5]. While fLi,k|Bi,k( · | · ) is an LLR
channel, the channel is not necessarily symmetric in general.2 Symmetry can be enforced
by adding modulo 2 independent and identically distributed bits di,k to the bits bi,k [49].
After the demodulator, the corresponding LLR is multiplied by d̄i,k = (−1)di,k , which
implies that the bits di,k are known to both the transmitter and receiver. The resulting
bit channel fLi,k|Bi,k( · | · ) can be shown to be symmetric [49].

We proceed by quantifying the quality of the m bit channels, where we rely on the
mutual information (MI) as a measure of quality. The MI between the output of a

2The symmetry condition will become important when discussing DE and LDPC codes, where one relies
on the all-zero codeword assumption.
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symmetric LLR channel fL|B(l|b) and uniform input bits is given by

I(L;B) = E
[
log2

(
fL|B(L|B)
fL(L)

)]
(3.3)

= 1− E
[
log2

(
fL|B(L|B) + fL|B(L|1−B)

fL|B(L|B)

)]
(3.4)

= 1− E
[
log2

(
1 +

fL|B(L|1−B)
fL|B(L|B)

)]
(3.5)

= 1− E
[
log2

(
1 + exp((−1)1−BL)

)]
(3.6)

= 1−
∫ +∞

−∞
fL|B(l|0) log2(1 + exp(−l)) dl. (3.7)

Writing the MI in the form (3.7) can be useful in order to compute the MI with the help
of Monte Carlo integration.

It turns out that, while the channel quality of the bit channels can be determined
quite efficiently, it is very difficult to find exact analytical expressions for the actual
densities fLi,k|Bi,k( · | · ). A common approach in the analysis of BICM is to make the
simplifying assumption that the densities fLi,k|Bi,k( · | · ) are Gaussian. An LLR channel
with a Gaussian density is particularly simple, because it can be parametrized by a
single parameter. More precisely, we refer to a bit channel fL|B(l|b) as a symmetric
Gaussian LLR channel with parameter σ2 if L ∼ N (σ2/2, σ2) conditioned on B = 0
and L ∼ N (−σ2/2, σ2) conditioned on B = 1, where N (µ, σ2) denotes the Gaussian
distribution with mean µ and variance σ2. The MI between the output of a symmetric
Gaussian LLR channel and uniform input bits is denoted by J(σ). Under the Gaussian
assumption, a helpful approximation of the setup in Fig. 3.2(a) is shown in Fig. 3.2(b),
where transmission takes place over m parallel symmetric Gaussian LLR channels with
different parameters σ2

i . In order to find a correspondence between the LLR channels
fLi,k|Bi,k( · | · ) and the parameters σ2

i , one may match the MI according to J(σi) =
Ii(SNR)⇔ σ2

i = J−1(Ii(SNR))2, where Ii(SNR) = I(Bi,k;Li,k) is independent of k.
While the parallel Gaussian model can be quite useful, one should, however, be aware

of the inaccuracies of this simplified model. In particular, the bit channels are not
independent as suggested in Fig. 3.2(b) and the true distribution of the LLRs is not
Gaussian. To illustrate the latter inaccuracy, in Fig. 3.3, we compare the actual densities
with the approximated Gaussian densities for two different SNRs for the first two bit
positions of the 16-QAM constellation shown in Fig. 3.1(a).3 The densities fLi,k|Bi,k(l|0)
are estimated via histograms and shown by the solid lines, whereas the Gaussian densities
are shown by the dashed lines. It can be seen that the actual densities are clearly non-
Gaussian and the accuracy of the Gaussian approximation therefore depends on the
application scenario. For the application in Papers A and B (i.e., predicting the iterative
3The third and fourth bit positions lead to identical distributions, due to the fact that 16-QAM with
the shown labeling can be seen as a product constellation of two one-dimensional constellations.
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performance behavior of LDPC codes), the approximation turns out to be quite accurate
and at the same time allows for a major simplification of the analysis, thereby justifying
its use.
Consider now the case where we employ a single binary code C ⊂ {0, 1}n of length n,

and each codeword is transmitted using N = n/m symbols xk. The allocation of the
coded bits to the modulator (i.e., the different bit channels in Fig. 3.2(b)) is determined
by a bit mapper as shown in Fig. 3.4. In Papers A and B, our goal is to find good bit
mappers for a given code and signal constellation.
As a side note, we remark that the term “bit interleaver” is also commonly used instead

of “bit mapper”. In fact, the modulator Φ is sometimes referred to as the (symbol)
mapper (and the demodulator Φ−1 as the demapper), which the reader should be aware
of in order to avoid confusion. However, the terms “bit mapper”, “bit mapping”, or
“mapping” seem to be preferred in the literature when the allocation of the coded bits to
the constellation symbols Φ is explicitly studied or optimized, see, e.g., [50,51]. Moreover,
outside the context of BICM, the terms “mapping device” or “channel mapper” are used
when studying parallel channels in combination with binary codes, e.g., in [52,53].
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CHAPTER 4

Low-Density Parity-Check Codes

LDPC codes were proposed by Gallager in his Ph.D. thesis [15]. They were conceived
as practically decodable codes, able to “utilize the long block lengths necessary for low
error probability without requiring excessive equipment or computation” [54].

In this chapter, we review some basic concepts behind LDPC codes and iterative
decoding, focusing on protograph-based codes. In Section 4.1, we give a formal definition
of an LDPC code. In Section 4.2, we review BP decoding which is based on message
passing. The protograph-based construction of LDPC codes is explained in 4.3. The
basic idea behind the asymptotic analysis of LDPC codes via DE is outlined in Section
4.4. Finally, in Section 4.5 we briefly cover spatially-coupled LDPC codes, which are one
of the code classes considered for the problem statement addressed in Papers A and B.
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4.1 Introduction
A binary LDPC code C of length n is defined as the null space of a sparse parity-check
matrix H = [hi,j ] ∈ {0, 1}c×n, i.e.,

C = {c ∈ {0, 1}n : Hcᵀ = 0}, (4.1)

where n > c and operations (i.e., additions and multiplications) are over the binary field.
Assuming that H has full rank c, one can invoke the fundamental theorem of linear
algebra to infer that the code has |C| = 2d codewords, where d = n− c is the dimension
of the code. The code rate is defined as R = d/n = 1− c/n.
The definition in (4.1) does indeed apply to an arbitrary binary linear code with a given

parity-check matrix H. It is of course up to interpretation when exactly the matrix H
should be classified as sparse (and, hence, the resulting code should be classified as an
LDPC code). As an example, consider the case where H is such that each row contains
exactly dc ones and each column contains exactly dv ones. Choosing n and c large
compared to dc and dv then leads to a sparse matrix H. The code defined by such a
matrix H is referred to as a regular LDPC code.

4.2 Iterative Belief Propagation Decoding
Consider the scenario where each bit in the codeword of an LDPC code is transmitted
over an LLR channel fL|B( · | · ) (recall the definition of an LLR channel in Section 3.2).
The goal of the decoder is to recover the transmitted codeword based on the observation
from the channel, which consists of n LLRs. These LLRs can be interpreted as the initial
belief about each coded bit. The decoding is based on a graphical representation of the
code. In particular, the parity-check matrix of an LDPC code can be represented by
using a bipartite Tanner graph consisting of n variable nodes (VNs) and c constraint
nodes (CNs), where the i-th CN is connected to the j-th VN if and only if hi,j = 1.
During the decoding process, the decoder tries to iteratively improve the accuracy of the
initial belief by exchanging messages in the form of extrinsic LLRs between VNs and
CNs along the edges of the Tanner graph.
For an excellent and comprehensive description of BP decoding, we refer the reader

to [12, Ch. 5.3]. Here, we only briefly review the basic steps of the decoding algorithm. We
use the following convention. Messages arriving at VNs are denoted by a and messages
emanating from VNs are denoted by b. For CNs, it is the other way around, i.e., arriving
messages are denoted by b, while emanating messages by a. In an attempt to avoid
cluttered notation, only one index is appended to a or b in order to locally distinguish
between messages along different edges for the same node. The corresponding picture we
have in mind is illustrated in Fig. 4.1. By locally we mean that, for example, the message
b1 emanating from the magnified VN does not correspond to the message b1 arriving at
the magnified CN. (In fact, from the way the figure is drawn, the message b1 arriving at
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Figure 4.1: Illustration of the messages involved in the iterative BP decoding algorithm.

the magnified CN would emanate from the fourth VN, counting from the top.)
Consider now an arbitrary VN of degree dv, where the degree of a VN corresponds to

the number of CNs that are connected to it. There are dv + 1 messages arriving at this
VN, where a1, . . . , adv are messages from CNs and ach corresponds to the channel LLR.
The dv outgoing messages b1, . . . , bdv are computed according to

bi =
∑
∼i

aj + ach, (4.2)

where the summation is over the index set j ∈ {1, . . . , dv} excluding the index i. Similarly,
if we consider an arbitrary CN of degree dc, there are dc incoming messages b1, . . . , bdc
and the outgoing messages are computed according to

ai = 2 tanh−1

(∏
∼i

tanh(bj/2)
)
, (4.3)

where the product is over the index set j ∈ {1, . . . , dc} excluding the index i. Since the
CN operation (4.3) is central to the analysis of LDPC codes under iterative decoding, it
is very common to rewrite it in terms of the binary boxplus operator defined by

b1 � b2 = 2 tanh−1 (tanh(b1/2) tanh(b2/2)) . (4.4)

The box-addition of an arbitrary number of terms is evaluated by recursively applying
(4.4), e.g., b1 � b2 � b3 = (b1 � b2) � b3. With this convention, one can write the CN
operation more concisely as

ai =�
∼i

bj . (4.5)
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copy permute

Figure 4.2: Illustration of the protograph lifting procedure for P = (3, 3) and M = 6.

The decoding process can now be described as follows. Set ach for all VNs to the cor-
responding channel LLR and set all other messages to 0. (As an example, in a BICM
system, the channel LLRs are computed according to (3.2).) Then, repeat the following
two steps. First, compute outgoing messages for all VNs according to (4.2). After that,
compute the outgoing messages for all CNs according to (4.3). Stop if either a maximum
number of iterations has been reached or the proper combination of the hard decisions
on the messages

dv∑
j=1

aj + ach (4.6)

for all VNs forms a valid codeword.

4.3 Code Construction via Protographs
There exist different methods to construct “good” LDPC codes, i.e., good matrices H,
and one popular method is by using protographs [20]. A protograph is a “small” bipartite
graph defined by an adjacency matrix P = [pi,j ] ∈ Nc

′×n′
0 , called the base matrix.

Given P , a parity-check matrix H is obtained by replacing each entry pi,j in P with a
random binary M -by-M matrix which contains pi,j ones in each row and column. This
procedure is called lifting and M ≥ maxi,j pi,j is the so-called lifting factor. Graphically,
it amounts to copying the protograph M times and subsequently permuting edges in
order to obtain the Tanner graph. Parallel edges, i.e., for pi,j > 1, are permitted in the
protograph and are resolved in the lifting procedure. The design rate of the code is given
by R = 1 − c/n = 1 − c′/n′, where c = c′M and n = n′M . As an example, the lifting
procedure for P = (3, 3) and M = 6 is illustrated in Fig. 4.2.
Designing codes via protographs has several practical advantages, e.g., a quasi-cyclic

code is easily obtained by constraining the M -by-M matrices to have a circulant struc-
ture. This in turn allows for hardware-efficient implementation [12, p. 263] suitable
for high-speed optical communications [6]. Moreover, codes of different lengths can be
obtained simply by adjusting the lifting factor.
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4.4 Density Evolution
DE is a powerful tool to analyze the iterative decoding behavior and performance of
LDPC codes in the limit of infinite block length [24]. DE mimics the decoding process
under a cycle-free graph assumption by tracking how the densities of the messages evolve
with iterations. DE is commonly used to find so-called decoding thresholds, which can
be interpreted as the capacity for LDPC codes under BP decoding. Similar to the
channel capacity, the threshold divides the channel quality parameter range (for example
the parameter σ2 of a symmetric Gaussian LLR channel) into a region where reliable
decoding is possible and where it is not.

The main steps in the DE algorithm can be understood by considering the update
equations (4.2) and (4.3) for the VNs and CNs, respectively. If we assume that the
involved incoming messages are random variables, then they have a certain probability
distribution or density. For example, ach is distributed according to the LLR channel.
The main question is, how can we obtain the densities of the outgoing messages? For
the VN update, the answer turns out to be a simple convolution. In particular, for
two independent random variables A and B with distributions fA(a) and fB(b), their
sum C = A + B is distributed according to fC(c) = fA(a) � fB(b), where � denotes
convolution. It is convenient to introduce the short notation a � b, where a and b are
placeholders for the densities of the random variables A and B [11]. Given the densities
of the incoming messages, the densities of the outgoing messages can then be computed
according to

bi = �
∼i

aj � ach. (4.7)

For the CN update, it is somewhat more challenging to obtain the densities of the out-
going messages. The most straightforward approach is by using Monte Carlo techniques
and histograms. Consider the case where two messages b1 and b2 with densities b1 and
b2 are processed according to the boxplus operation a = b1 � b2. In order to obtain
the density a, one can simply generate many independent realizations of the random
variables B1 and B2, perform the boxplus operation, and collect the resulting samples.
These samples can be seen as a particle representation of the density a. This method is
illustrated in Fig. 4.3, where it is shown how two consistent Gaussian densities “evolve”
under the boxplus operation. A density a is called a consistent Gaussian density1 with
parameter σ2 if A ∼ N (σ2/2, σ2). As a short notation, one may introduce the operator
a = b1 � b2, which is referred to as box-convolution [11]. In practice, the box-convolution
of two densities can be implemented by using a look-up table approach [55]. Similar to
(4.7), the densities of the outgoing CN messages can then be computed according to

ai = �
∼i

bj . (4.8)

1Note that the conditional distribution fL|B(l|0) of a symmetric Gaussian LLR channel corresponds to
a consistent Gaussian density.
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Figure 4.3: Illustration of the box-convolution of two consistent Gaussian densities. The green
dashed line corresponds to the consistent Gaussian approximation obtained via
EXIT functions.

For protograph-based codes, DE can be used to analyze the iterative decoding behavior
by tracking one density for each edge in the protograph. This asserts that the messages
exchanged during the decoding process over edges belonging to the same edge-type (de-
fined by one protograph edge) have the same density. Assume that the transmission takes
place over a symmetric LLR channel with a fixed channel quality. Due to the channel
symmetry, one may assume the transmission of the all-zero codeword [12, p. 389]. The
iterative decoding behavior can be predicted via DE as follows. Set ach for all VNs in
the protograph to fL|B(l|0) and set all other densities to δ(l). Then, repeat the following
two steps. First, calculate the outgoing message densities for all VNs in the protograph
according to (4.7). After that, calculate the outgoing message densities for all CNs in the
protograph according to (4.8). Stop if the error probability associated with the density

dv�
j=1

aj � ach (4.9)

for each VN is below a certain target bit error probability (successful decoding), where
the error probability associated with a density a is given by

pe(a) =
∫ 0

−∞
fA(a) da, (4.10)

or a maximum number of iterations is reached (decoding failure). In order to find the
decoding threshold, we start from a channel quality where the decoding is predicted to
be successful. The above procedure is then repeatedly applied for decreasing channel
quality until the decoding fails.
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Approximate Density Evolution via EXIT Functions

Tracking the full densities (or quantized densities in practice) is computationally de-
manding and extrinsic information transfer (EXIT) functions are usually considered to
be a good compromise between computational efficiency and accuracy [56]. Let us as-
sume that the density a fulfills the condition fA(a)ea = fA(−a). Then, the density can
be associated with the MI measure

I(a) = 1−
∫ ∞
−∞

fA(a) log2(1 + e−a) da. (4.11)

Now, instead of tracking the evolution of densities, one may track the evolution of the MI
measure associated with the densities (which is just a scalar value for each density). Let
us assert that, under the VN operation, this measure evolves approximately according to

I(bi) ≈ J̃
(∑
∼i

J̃−1(I(aj)) + J̃−1(I(ach))
)
, (4.12)

whereas, under the CN operation it evolves approximately according to

I(ai) ≈ 1− J̃
(∑
∼i

J̃−1(1− I(bj))
)
, (4.13)

where J̃(x) = J(
√
x). These two equations can be motivated as follows. Eq. (4.12) is ex-

act under the assumption that all incoming densities a1, . . . , adv , and ach are consistent
Gaussian densities. To see this, note that the convolution of two consistent Gaussian
densities with parameters σ2

1 and σ2
2 is another consistent Gaussian density with param-

eter (σ2
1 + σ2

2)/2. Furthermore, if a is a consistent Gaussian density with parameter σ2,
the operation J̃−1(I(a)) simply returns σ2. Without going into the details, (4.13) can be
heuristically motivated by a duality property that holds for the binary erasure channel
(BEC) [12, p. 415]. It is important to point out that (4.13) it is not exact, even if all
incoming densities are consistent Gaussians, but it turns out to be surprisingly accurate
nonetheless. For example, the green dashed lines in Fig. 4.3 have been obtained using
(4.13), where the resulting MI measure is plotted in the form of the associated consistent
Gaussian density.

4.5 Spatially-Coupled LDPC Codes
Spatial coupling of regular LDPC codes has emerged as a powerful technique to construct
capacity-achieving codes for a large class of channels using iterative BP decoding [14,57].
The main idea is to make several copies of the Tanner graph that defines the regular
code, arrange the copies next to each other, and then interconnect neighboring graphs in
a particular way. The key to the outstanding performance of codes constructed in such
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Figure 4.4: Illustration of the base matrix P [T ] of a (J,K) regular, protograph-based SC-LDPC
code.

a way is a boundary effect due to slight irregularities at the two ends of the resulting
Tanner graph.
In general, spatially-coupled LDPC codes have parity-check matrices with a band-

diagonal structure, see, e.g., [57] for a formal definition. Here, we briefly introduce their
construction via protographs [58], [59, Sec. II-B]. The base matrix P [T ] of a (J,K)
regular, protograph-based spatially-coupled LDPC code with termination length T can
be constructed by specifying matrices P i, 0 ≤ i ≤ ms of dimension J ′ by K ′, where ms
is referred to as the memory. The matrices are such that P =

∑
iP i has column weight

J and row weight K for all columns and rows, respectively. Given T and the matrices
P i, the base matrix P [T ] is constructed as shown in Fig. 4.4. From the dimensions of
P [T ] one can infer a design rate of R(T ) = 1− (T +ms)J ′/(TK ′). As T grows large, the
rate approaches R(∞) = 1− J ′/K ′.
Before continuing, it is insightful to recall the following statement from [60], where the

design of irregular LDPC codes is studied. (VNs are referred to as message nodes and
CNs are referred to as check nodes.)

“[. . . ] we offer some intuition as to why irregular graphs prove useful. [. . . ]
Message nodes with high degree tend to their correct value quickly. These
nodes then provide good information to the check nodes, which subsequently
provide better information to lower degree message nodes. Irregular graph
constructions thus lead to a wave effect, where high degree message nodes tend
to get corrected first, and then message nodes with slightly smaller degree,
and so on down the line.” [emphasis added]

For spatially-coupled LDPC codes, one can give a similar heuristic explanation for their
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Figure 4.5: Illustration of the wave-like decoding behavior of spatially-coupled LDPC codes.

outstanding performance as follows (see [57] for a detailed explanation). By inspecting
the structure of the base matrix in Fig. 4.4, one may verify that the CN degrees corre-
sponding to the first and last couple of rows are lower than the CN degrees corresponding
to the rows in between. The lower degree CNs lead to a locally better decoding capability
which helps decoding neighboring VNs. This local boundary effect turns out to initiate
a wave-like behavior and can have a global effect on the decoding capability of the en-
tire code with increasing number of decoding iterations. To illustrate this behavior, in
Fig. 4.5, we show the predicted bit error rates pe via (approximate) DE for the coded
bits corresponding to the j-th column of the spatially-coupled LDPC protograph P [T ]
with component matrices P 1 = P 2 = P 3 = (1, 1) and T = 100. We assume transmission
over a symmetric Gaussian LLR channel with parameter σ2 = 4. In the figure, ` denotes
the iteration number. It can be observed that the error probability of the VNs at the
two ends of the graph converges to zero after 15 iterations. Due to the spatial coupling,
this boundary effect propagates inwards all the way to the center of the protograph in a
wave-like fashion.

An important reason for the tremendous interest in spatially-coupled LDPC codes is
their universality. While irregular LDPC codes have been optimized for various commu-
nication channels, the degree distribution pairs that achieve the best performance usually
vary from channel to channel [61]. In contrast, spatially-coupled LDPC codes derived
from simple regular codes have been shown to universally achieve capacity for a variety of
channels. However, there are also many open research problems concerning the practical
implementation of spatially-coupled LDPC, see [62] for a recent overview. For example,
the price to pay for the wave-like decoding behavior is a rate loss with respect to regular
codes that are defined by the protograph P =

∑
iP i.
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CHAPTER 5

Generalized Product Codes

The practical implementation of BP decoding for LDPC codes at very high data rates
poses a significant challenge. This motivates the use of coding schemes that are less
complex (potentially sacrificing some performance). One particular example of such a
coding scheme is discussed in this chapter, namely the use of GPCs in combination with
iterative BDD.

We start in Sections 5.1 and 5.2 by reviewing GLDPC codes and PCs, respectively.
GPCs can be regarded as a subclass of GLDPC codes and a formal definition is given
in Section 5.3 together with several examples of GPCs. In Section 5.4, we discuss the
assumed channel model and describe the decoding of GPCs via iterative BDD. Finally,
in Section 5.5 we briefly outline and compare two approaches to perform an asymptotic
DE analysis for GPCs.
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5.1 Generalized Low-Density Parity-Check Codes
In the previous chapter, we have seen that the parity-check matrix H of an LDPC code
can be represented in terms of a bipartite Tanner graph where coded bits and parity-
check equations are represented by VNs and CNs, respectively. An edge in the graph
indicates if a certain bit participates in a certain parity-check equation (i.e., a row in
H). The code can then be defined as the set of all VN bit assignments such that the
parity-check equations corresponding to the CNs are satisfied.
This concept can be generalized by interpreting the CNs not just as simple parity-

check equations but as component code constraints corresponding to smaller block codes
(e.g., Hamming or BCH codes). In order to specify the code, one uses a binary matrix
Γ ∈ {0, 1}m×n. This matrix is interpreted as the adjacency matrix for an associated
bipartite graph. The graph consists again of n VNs representing coded bits (one for
each column in Γ) and m CNs representing component code constraints (one for each
row in Γ). An edge between a VN and CN indicates if a certain bit participates in a
certain constraint enforced by a component code. In addition to the matrix Γ (or the
corresponding graph), one also needs to specify m component codes B1,B2, . . . ,Bm that
are associated with the m CNs in the graph. The overall code is defined as the set of all
VN bit assignments that satisfy all component code constraints. The code thus defined
is referred to as a GLDPC code.
Assuming that all component codes B1,B2, . . . ,Bm are linear codes, the resulting over-

all GLDPC code is also a linear code [12]. This implies that the code can alternatively
be represented by using a parity-check matrix H and a corresponding Tanner graph
where CNs correspond again to simple parity-check equations. It should thus be stressed
that the term “generalized” refers to the extended graphical representation by means
of “generalized” CNs. The main reason for introducing these generalized CNs is that
they add a layer of abstraction into the code representation. This may be helpful when
constructing new codes or devising decoding algorithms. For example, assume that we
have at our disposal an efficient decoding algorithm for some linear block code. The
GLDPC code framework then allows us to build longer and potentially more powerful
codes by using this block code as a building block. When decoding the overall code, we
may take advantage of the available component code decoder, thereby allowing for an
efficient overall decoding scheme.

5.2 Product Codes
PCs are one of the first examples that use the idea of building longer codes from shorter
component codes [21]. In the following, we review the code construction and the repre-
sentation as a GLDPC code.
Let B be some binary linear block code of length nB. A PC is defined as the set of

nB × nB arrays such that each row and each column in the array is a codeword in B.
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Figure 5.1: Illustrations for a PC with nB = 5.

The code array for nB = 5 is visualized in Fig. 5.1(a), where we use a two-dimensional
indexing to refer to the coded bits ci,j for i, j ∈ {1, 2, . . . , nB}. In the figure, one particular
row/column constraint is highlighted in red.

A PC can be interpreted as a GLDPC code with a very structured Tanner graph
representation [63]. In particular, for nB = 5, the adjacency matrix Γ of the Tanner
graph is given by

Γ =



1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1


, (5.1)

where the first and last five rows of Γ correspond to the row and column component
codes, respectively. We further have B1 = B2 = · · · = B10 = B in the GLDPC code
representation since all component codes are identical.

From the structure of Γ, it can be seen that all VNs in the corresponding Tanner graph
have degree 2. This is due to the fact that each coded bit (i.e., each entry in the array) is
protected by precisely two component codes. In this case, it turns out to be convenient
to represent these degree-2 VNs by simple edges. Fig. 5.1(b) shows the simplified Tanner
graph corresponding to the Γ-matrix in (5.1). With this simplified representation, the
Tanner graph corresponds to a complete bipartite graph: There exist two types of CNs
representing the row and column component codes, respectively, and each CN of one
type is connected to all CNs of the other type. This gives rise to exactly n2

B edges, each
of which corresponds to one coded bit in the array.
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As a side note, one subtlety that arises in the graphical representation of a GLDPC
code is that, strictly speaking, the edges emanating from each CN should also be la-
beled with the corresponding component code bit positions [63]. If the component code
has length nB (i.e., the corresponding CN has degree nB), then in principle any of the
nB! possible permutations of the bit positions can be assigned to the edges. Choosing
different assignments may result in an overall code with different properties, e.g., rate
and minimum distance [63]. The reason this is not an issue for LDPC codes is that a
parity-check equation is invariant under the order in which the bits appear in the equa-
tion. Moreover, for PCs and related code structures, the code is typically unambiguously
defined by an accompanying array description.

5.3 Generalized Product Codes
With the background about GLDPC codes and PCs described in the previous two sec-
tions, we are now in the position to give a formal definition of a GPC. In particular, we
adopt the convention in [64] and define a GPC as any GLDPC code whose Tanner graph
representation consists exclusively of degree-2 VNs.1 This implies that, similar to PCs,
each coded bit is protected by exactly two component codes. However, the bits may not
necessarily be arranged in the form of a rectangular array.
We remark that this terminology is nonstandard and GPCs are sometimes also referred

to simply as “product-like” codes [9]. In the following, we review several examples of
GPCs that are relevant for the appended papers.

5.3.1 Braided Codes
Braided codes are proposed in [18] as “convolutional (or sliding) versions” of PCs. Similar
to PCs, the code construction is based on a two-dimensional array where bits are placed in
the array under the constraint that rows and columns form codewords in some component
code. Depending on the type of component code, the resulting braided code is referred
to either a braided block code or a braided convolutional code. In this thesis, we focus
exclusively on the case where the component codes are block codes, and for simplicity
we refer to the resulting codes simply as braided codes.
Braided codes come in different flavors, depending on the precise structure of the

code array. Figs. 5.2(a) and (b) show two examples which are referred to as tightly
braided codes and block-wise braided codes, respectively. In both cases, the array is
conceptually infinite, i.e., one assumes the transmission of a continuous data stream. For
tightly braided codes, the array structure consists of rows and columns that are shifted by
one array element at each step. The simplified Tanner graph for a tightly braided code is
shown for example in [18, Fig. 2(b)]. For the block-wise braided codes the array consists

1In [10], a slightly different definition of a GPC is given.
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Figure 5.2: Differently shaped code arrays for the various GPCs discussed in Section 5.3.

of three block ribbons with block size a. For example, the block size in Fig. 5.2(b) is
given by a = 4.
Braided codes can be classified as spatially-coupled PCs or alternatively as convolu-

tional PCs. (In [18], the term “GLDPC convolutional codes” is used instead.) Braided
codes have been explicitly considered for the use in fiber-optical communication systems
for example in [10]. The code construction we propose in Paper D includes block-wise
braided codes as special cases, thereby enabling an asymptotic analysis for these codes.

5.3.2 Staircase Codes
Staircase codes are proposed in [9] as a new class of error-correcting codes for optical
transport networks by “combining ideas from convolutional and block coding”. Given
a component code B of length nB, a staircase code is defined as the set of all matrix
sequences Bi ∈ {0, 1}a×a, where a = nB/2 and i = 0, 1, 2, . . . , such that the rows in
[Bᵀ

i−1Bi] for all i ≥ 1 form valid codewords in B. The matrix B0 is assumed to be
initialized to the all-zero matrix. The code array that corresponds to this definition
has a characteristic staircase structure and is shown in Fig. 5.2(c), where nB = 12 and
a = 6. Similar to braided codes, staircase codes can also be classified as instances of
spatially-coupled PCs.

When comparing staircase and braided codes, it should be mentioned that for braided
codes, only soft-decision decoding of the component codes is studied in [18]. The au-
thors in [9] consider this to be “unsuitable for high-speed fiber-optic communications”.
Motivated by the excellent performance of staircase codes under iterative hard-decision
decoding, the design of braided codes intended for fiber-optical communications is con-
sidered for example in [10]. The resulting braided code is found to be “competitive”
to the staircase code designed in [65] suggesting that the performance of staircase and
braided codes can be quite similar. This conclusions is also confirmed in Paper E, where
we compare staircase codes and braided codes. For the considered parameters, both code
classes perform almost identically in terms of waterfall performance and error floor.
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Figure 5.3: Illustrations for an HPC with nB = 5. In the array, “*” means “equal to the
transposed element”. The highlighted array elements illustrate one particular code
constraint, which is also highlighted in the Tanner graph.

5.3.3 Half-Product Codes
Consider again the simplified Tanner graph representation of a PC shown in Fig. 5.1(b)
which corresponds to a complete bipartite graph. The graph structure is a consequence
of the array description of a PC which appears to be quite natural. On the other hand,
in [66], Justesen points out that if one focuses instead on the graph, “it is not clear why
a bipartite graph is preferable” and that in this case “the more natural concept [...] is
a complete graph”. Such a complete Tanner graph indeed appears as one of the first
examples in [63]. The resulting codes, however, have received very little attention in the
literature thus far and, to the best of our knowledge, Justesen was the first to provide
an interpretation of the graph structure in terms of a code array [66, Sec. III-B]. He also
found a direct connection to conventional PCs which we briefly review in the following
based on the descriptions in [67, Sec. IV-B].
Consider a conventional nB×nB PC based on a component code B of length nB. Based

on this PC, a new code is formed by keeping only codeword arrays that have zeros on the
diagonal and are symmetric, in the sense that the array is equal to its transpose. Since
the diagonal and upper (or lower) triangular part of the array do not contain “useful”
bits, they can be ignored so that the effective length of the resulting code is given by
m =

(
nB
2
)
. Such codes are referred to as half-product codes (HPCs) in [66]. The Tanner

graph of an HPC corresponds exactly to a “complete Tanner graph” with nB CNs where
each CN is connected to all other CNs through a VN. As an example, Figs. 5.3(a) and
(b) show the code array and Tanner graph for an HPC assuming that nB = 5, where one
particular code constraint is highlighted in red.
HPCs and PCs are compared for example in [64], where it is shown that HPCs can have

larger normalized minimum distance than PCs. It is also possible to extend the above
definition to other classes of GPCs, i.e., other array shapes. For example, for the arrays
shown in Figs. 5.2(a) and (b), it poses no conceptual problem to enforce the additional
constraint (additional to the usual row and column component code constraints) that
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the array should be symmetric with a zero diagonal. The resulting codes belong to the
class of symmetric GPCs [64]. In general, symmetric GPCs use symmetry to reduce the
block length of a GPC while employing the same component code [64].

5.4 Iterative Bounded-Distance Decoding
We assume that the intended “target” channel for GPCs is the binary symmetric channel
(BSC) where each bit is flipped independently of all other bits with a certain crossover
probability p. In the context of fiber-optical communications, this channel can be mo-
tivated by considering PM-QPSK transmission (i.e., independent binary modulation in
both quadratures and polarizations) in combination with a minimum-distance detector
that provides a hard decision about the transmitted signal. The BSC can be shown to
be exact in the case where nonlinear transmission effects are ignored.

For the BSC, there exist very efficient algebraic BDD for several linear block codes,
e.g., BCH codes. BDD corrects all error patterns with Hamming weight up to the error-
correcting capability t of the code. The idea is then to use such codes as component codes
for a GPC and decode the overall code by iteratively performing BDD of all component
codes. While this decoding scheme is suboptimal, it has been shown to offer excellent
performance provided that the code rate of the GPC is relatively high. For example, the
staircase code designed in [9] has rate R = 239/255 ≈ 0.937 and performs only about
0.56 dB away from the channel capacity of the BSC under iterative BDD. Moreover, the
decoder data flow requirements in this case are estimated to be more than two orders
of magnitude smaller compared to the requirements for a comparable LDPC code with
message-passing decoding [9].

The main conceptual problem that arises in the theoretical analysis of iterative BDD
for GPCs over the BSC is that the component decoders may miscorrect in which case
a successful (component) decoding is declared but the found codeword is not the cor-
rect one. Such miscorrections introduce additional bit errors into the iterative decoding
process which makes a rigorous analysis challenging. One approach to avoid this issue
is to ignore miscorrections entirely and assume the use of so-called idealized BDD. Such
a decoder either outputs the correct codeword or declares a decoding failure. The as-
sumption of idealized BDD over the BSC is conceptually equivalent to transmission over
the BEC. For the BEC, each bit is erased independently of all other bits with a certain
erasure probability p. In that case, the error-correcting capability t of the component
code is interpreted as the erasure-correcting capability. The BEC is used in Papers D–F
in order to allow for a rigorous theoretical analysis.

5.5 Density Evolution
The purpose of this section is to discuss two different approaches to perform an asymp-
totic performance analysis for GPCs under iterative BDD assuming transmission over
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the BEC. The first approach is based on an ensemble argument and uses the ideas and
techniques discussed in [24,68]. The second approach directly targets a sequence of deter-
ministically constructed GPCs and is based on the work in [69,70]. Here, we only give a
high-level overview of the basic approach idea in both cases. The main goal of this section
is to contrast the two approaches and discuss potential advantages and disadvantages.
As a side note, the reader should be aware that the term “density evolution” for the

asymptotic analysis may be somewhat misleading. This is because the parameter of
interest in this case turns out to correspond to a simple probability and not a density.

5.5.1 Code Ensembles
The first and most widely used approach to perform an asymptotic analysis for GPCs
is to define a “suitable” code ensemble. In the following, we review one such ensemble
which is taken from [71] as an illustrative example. Let B be a component code of length
nB. Assume that there are m CNs of degree nB (each corresponding to the component
code B) and mnB/2 VNs of degree 2. In order to construct the Tanner graph, it is
helpful to imagine that there are mnB half-edges emanating from all the CNs and VNs,
respectively. One particular code in the ensemble is defined by the Tanner graph obtained
by connecting these half-edges using a uniform random permutation. The ensemble is
defined as the set of all codes defined by all possible choices of permutations.
The above ensemble definition is conceptually not much different from the definition of

the regular LDPC code ensemble [24], except that the graph consists of generalized CNs.
The asymptotic scenario considers the limit m → ∞, i.e., one increases the number of
VNs and CNs in the graph, while using a fixed component code. The principal conclusions
from [24] (see also [68]) can be paraphrased as follows.

1. Asymptotically, the fixed-depth neighborhood of a randomly chosen VN or CN in
the Tanner graph becomes a tree with high probability.

2. Assuming that the neighborhood is tree-like, the analysis of the expected iterative
decoding performance is drastically simplified to the extend that it can usually be
accomplished “in closed form” using a recursive expression.

3. There exists a concentration phenomenon that ensures that with high probability,
a particular code taken uniformly at random from the ensemble will have actual
performance close to the expected decoding performance computed in the previous
step.

By combining these three conclusions, one can then study and analyze the asymptotic
performance of the GPC ensemble defined above.
This ensemble approach appears to be appealing at first. For instance, one may be

interested in using a fixed component code B in practice (e.g., a triple-error correcting
BCH code of length nB = 1023) and the ensemble analysis enables an asymptotic analysis
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for precisely this component code. Moreover, the approach is not limited to the analysis
of iterative BDD but can be used to analyze the ensemble performance for a variety of
different channels and iterative decoding algorithms [24].

On the other hand, for certain applications, the ensemble approach may not be ap-
propriate. In particular, assume that we are interested in implementing a GPC with a
fixed deterministic structure, e.g., a PC. In that case, it is not clear to what extend the
ensemble approach is useful. In order to illustrate this, note that a PC is contained in the
ensemble defined above for m = 2nB and a particular interleaver permutation. However,
the ensemble approach only makes a statement about codes that are sampled uniformly
at random from the ensemble and not particular ones. It is therefore not clear if the
expected ensemble performance is somehow indicative for the performance of a PC.

5.5.2 Deterministic Codes
For sequences of deterministic GPCs, choosing a meaningful asymptotic scenario is not
straightforward. For simplicity, let us restrict ourselves to “square” PCs, i.e., the case
where both the row and column component codes have length nB. For the asymptotic
scenario, we consider sequences of PCs with increasing array size. Increasing the array
size, however, has two consequences. First, it leads to an increase in the number of
component codes and thereby an increase in the number of CNs in the underlying Tanner
graph. This is similar to the ensemble approach described in the previous subsection.
However, increasing the array size also changes the component codes. In particular, the
length nB of each component code does not remain fixed but it increases. This is different
from the ensemble approach where the component code properties (including the length)
are assumed to remain fixed.

When dealing with sequences of component codes with increasing lengths, one should
also specify what happens to the other component code parameters, in particular the
erasure-correcting capability t. There are essentially two possibilities that have been
studied in the literature before. In the following, we briefly review both cases.

In the first case, one assumes that the erasure-correcting capability increases linearly
with nB, i.e., t is assumed to be a function of nB. In particular, one may assume that
each component code can correct a fixed fraction α ∈ (0, 1) of erasures in terms of its
block length, i.e., we have t = αnB. This case has been studied in [69]. The analysis
is based on Chernoff bounds and the conclusion is quite simple: If one has access to
component codes with t = αnB, then, asymptotically, it is pointless to construct a PC
out of these component codes since both the PC and each component code can operate
reliably if (and only if) the erasure probability satisfies p < α. In other words, the
product construction is useless in this asymptotic scenario.

In the second case, one assumes that the erasure-correcting capability remains fixed.
This is reasonable from a practical perspective because the complexity of algebraic BDD
for BCH codes increases drastically with t. With this assumption, however, one finds
that for any fixed erasure probability p, the decoding will fail with high probability in

41



Chapter 5 Generalized Product Codes

the limit nB → ∞. The reason for this is simple. Even if we choose p very small, the
expected number of erasures per row and column in the PC array grows linearly with nB
and will eventually far exceed the assumed finite erasure-correcting capability t of each
component code.
In summary, both cases lead to somewhat unsatisfactory answers. The important thing

to realize in the second case, however, is that we are essentially considering sequences
of PCs with code rate approaching 1 as nB → ∞. Due to this vanishing redundancy,
it should not come as a surprise that operating at any fixed erasure probability is futile
asymptotically. With this in mind, a meaningful asymptotic analysis can be performed
by allowing the erasure probability to decay slowly as c/nB for some fixed constant
c > 0. In other words, we are not considering a fixed channel anymore but the channel
is changing in accordance with the strength of the PC. This approach is pioneered for
PCs in [69, 70] and it heavily relies on properties from random graph theory. In Paper
D, this approach is extended to a large class of deterministic GPCs based on properties
of so-called inhomogeneous random graphs [26].
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CHAPTER 6

Conclusions and Future Work

In this chapter, we summarize the main conclusions from the appended papers and outline
some potentially interesting ideas for future work. The conclusions are structured in
terms of the two topics that are investigated in this thesis.

Bit Mapper Optimization for Spectrally-Efficient Systems (Papers A and B)

In Papers A and B, we study coded transmission systems that operate at high spectral
efficiency over fiber-optical links without inline dispersion compensation. Assuming a
linear coherent receiver, the classical AWGN channel with a modified SNR expression is
used as a design channel.

In Paper A, we propose a method to optimize the bit mapper that determines the
allocation of the coded bits from the channel encoder to the modulation or labeling bits of
the signal constellation. The proposed method applies to an arbitrary protograph-based
LDPC code. Compared to previous approaches for protograph-based codes, we use a
fractional allocation between the modulation bits and the VN classes in the protograph.
This allows for an unrestricted matching between different protographs and modulation
formats. We also discuss the bit mapper optimization for spatially-coupled LDPC codes
that are based on protographs and decoded using a windowed decoder. Our results show
that by using an optimized bit mapper, the transmission reach can be extended by up to
8%, with almost no added system complexity. We also provide a simulative verification
for a nonlinear transmission scenario based on the SSFM which confirms the accuracy of
the assumed channel model.

In Paper B, we consider the bit mapper optimization for spatially-coupled codes in
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more detail. In particular, we consider both spatially-coupled LDPC codes based on
protographs and the spatially-coupled PC ensemble in [27]. In the first case, standard
BP decoding is assumed, while in the second case we assume an iterative hard-decision
decoding algorithm which is significantly less complex. For both cases, we consider termi-
nated and tail-biting spatially-coupled codes. In general, for terminated spatially-coupled
codes with long spatial length, the bit mapper optimization only results in marginal per-
formance improvements, suggesting that a sequential or random allocation is close to
optimal. On the other hand, an optimized allocation can significantly improve the per-
formance of tail-biting spatially-coupled codes. Such codes do not possess an inherent
termination boundary. In this case, the unequal error protection offered by the modula-
tion bits can be used to create an artificial termination boundary that induces a wave-like
decoding behavior. Unlike for terminated spatially-coupled codes, the wave effect in this
case does not come at the price of a rate loss: tail-biting spatially-coupled codes have
the same design rate as the underlying uncoupled codes.
An interesting direction for future work could be to study the bit mapper optimization

for irregular spatially-coupled LDPC codes. In this thesis, we have assumed the use of
spatially-coupled LDPC codes that are based on regular LDPC codes. While such codes
are capacity-achieving, it has been shown in [72] that irregular spatially-coupled LDPC
codes can offer some advantages when taking into consideration practical restrictions for
parameters, e.g., a limited number of decoding iterations. For the irregular case, there is
an opportunity to optimize the bit allocation by only considering the different VN degrees
at one spatial position instead of considering the entire code chain. An optimized bit
mapper allocation could for example lead to a decreased number of decoding iterations
that are necessary to reach a certain target error rate.

Analysis and Design of Deterministic Generalized Product Codes (Papers C–F)

In Paper C, we study parameter optimization for staircase codes assuming an extrinsic
iterative hard-decision decoding algorithm. The optimization is based on a DE analysis
for a spatially-coupled PC ensemble that shares structural similarities with staircase
codes. Using this approach, staircase code parameters can be found at a significantly
reduced optimization time compared to a simulation-based approach. We also propose
an extension of staircase codes by allowing for multiple code constraints per row and
column in the corresponding array description. This construction leads to larger staircase
block sizes and steeper waterfall performance that better matches the predicted DE
performance.
The optimization approach in Paper C is, however, only heuristically motivated. In

particular, the DE analysis does not directly apply to staircase codes. This issue is
addressed in Paper D, where we consider an asymptotic DE analysis for deterministic
GPCs with a fixed Tanner graph structure. The main conclusion from Paper D can
be summarized as follows. There exists a large class of deterministic GPCs for which
a rigorous asymptotic DE analysis assuming iterative BDD over the BEC is possible.
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For example, the proposed code construction and analysis can be used to study the
asymptotic performance of

• conventional PCs [21], staircase codes [65], and block-wise braided codes [18],

• GPCs employing a mixture of different component codes with varying erasure-
correcting capabilities such as irregular PCs [73,74],

• symmetric GPCs [64] such as HPCs [66] which can be seen as symmetric subcodes
of certain GPCs.

The DE analysis in Paper D can also be used to study different decoding schedules that
are practically relevant such as row/column decoding for PCs or windowed decoding of
staircase and braided codes.

In Papers E and F, we use the proposed code construction and DE analysis to study
some relevant classes of GPCs in more detail. In Paper E, we provide a comparison
between staircase codes, block-wise braided codes, and the symmetric subcode of a block-
wise braided code which is referred to as a half-braided code. Our results indicate that
half-braided codes can outperform both staircase codes and braided codes in the waterfall
performance, at a lower error floor and decoding delay.

In Paper F, we consider spatially-coupled PCs in more detail. In particular, we revisit
the spatially-coupled PC ensemble that is used in Paper C for the parameter optimization
of staircase codes. It is shown in [27] that this ensemble can approach the capacity of the
BSC at high rates. Motiviated by this result, our main goal is to compare the ensemble
performance to the performance of deterministic GPCs with a spatially-coupled structure
via their respective DE equations. For the BEC, it is shown that there exists a family
of deterministic braided codes that performs asymptotically equivalent to the ensemble.
It is also shown that there exists a related but structurally simpler family of braided
codes with essentially the same performance, even though the DE equations are not
exactly equivalent. Lastly, we consider spatially-coupled PCs with a mixture of different
component codes. In that case, the conclusion is that employing such component code
mixtures for spatially-coupled PCs is not beneficial from an asymptotic point of view.

In the following, we suggest two potentially interesting topics for future work. The first
topic concerns the asymptotic performance of deterministic GPCs over the BSC. While
the obtained results for the BEC can be used to approximate the code performance
over the BSC, it would be desirable to rigorously characterize the BSC performance
including the effect of decoder miscorrections. For example, the equivalence between
the spatially-coupled PC ensemble in [27] and the deterministic spatially-coupled PCs in
Paper F only holds for the BEC. This is not sufficient to show that the same deterministic
codes are also capacity-achieving over the BSC. On the other hand, the proof in [27]
relies partially on the fact that the impact of miscorrections becomes small if the error-
correction capability increases. Similar conclusions should also hold for deterministic
GPCs, at least qualitatively.
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Chapter 6 Conclusions and Future Work

Another potentially interesting topic is the investigation of the finite-length scaling
behavior of deterministic GPCs, similar to the scaling analysis for certain LDPC code
ensembles presented in [75]. A generalization to deterministic GPCs may give a relatively
complete picture of the performance of these codes under iterative decoding.
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1 Introduction

Abstract

Soft forward error correction with higher-order modulations is often
implemented in practice via the pragmatic bit-interleaved coded mod-
ulation paradigm, where a single binary code is mapped to a nonbinary
modulation. In this paper, we study the optimization of the mapping
of the coded bits to the modulation bits for a polarization-multiplexed
fiber-optical system without optical inline dispersion compensation.
Our focus is on protograph-based low-density parity-check (LDPC)
codes which allow for an efficient hardware implementation, suitable
for high-speed optical communications. The optimization is applied
to the AR4JA protograph family, and further extended to protograph-
based spatially coupled LDPC codes assuming a windowed decoder.
Full field simulations via the split-step Fourier method are used to ver-
ify the analysis. The results show performance gains of up to 0.25 dB,
which translate into a possible extension of the transmission reach by
roughly up to 8%, without significantly increasing the system complex-
ity.

1 Introduction
There is currently a large interest in developing practical coded modulation (CM) schemes
that can achieve high spectral efficiency close to the ultimate capacity limits of optical
fibers [1]. Pragmatic bit-interleaved coded modulation (BICM) in combination with low-
density parity-check (LDPC) codes is one of the most popular capacity-approaching CM
techniques for achieving high spectral efficiency, due to its simplicity and flexibility [2].
For a BICM system, a helpful abstraction is to think about transmitting data using a
single forward error correction (FEC) encoder over a set of parallel binary-input channels,
or simply bit channels, with different qualities. This is due to the fact that bits are
not protected equally throughout the signal constellation. With this useful picture, an
immediate problem is how to best allocate the coded bits from the encoder to these
channels. As a baseline, a random or consecutive/sequential mapping is commonly used
in practice. However, by optimizing the mapping strategy, one can improve the system
performance, at almost no increased complexity cost. While BICM has been studied for
fiber-optical communications by many authors, see e.g., [3] or [4] and references therein,
to the best of our knowledge, optimized bit channel mappings have not yet been studied
for such systems. In the following, we use the term “bit mapper” to denote the device that
performs the bit channel mapping. We remark that other terms, e.g., “bit interleaver”
or “mapping device”, are also frequently used in the literature.

In this paper, we address the bit mapper optimization for a BICM system based
on LDPC codes in the context of long-haul fiber-optical communications. Our target
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system operates over a communication link with a lumped amplification scheme and
without optical inline dispersion compensation. In general, the signal undergoes a com-
plicated evolution and interacts with amplified spontaneous emission (ASE) noise and
co-propagating signals through dispersive and nonlinear effects. For dispersion uncom-
pensated transmission, it has been shown that an additive Gaussian noise (GN) model
can be assumed, provided that dispersive effects are dominant and nonlinear effects are
weak [5, 6]. We use the GN model for our analysis, which accounts for both the ASE
noise from inline erbium-doped fiber amplifiers (EDFAs) and nonlinear noise due to the
optical Kerr effect.
The starting point for the optimization problem is a fixed modulation format and a

given error correction code, i.e., we do not consider the joint design of the modulation,
bit mapper, and code. This scenario is often encountered in practice when the modu-
lation and code have been designed separately and/or are predetermined according to
some communication standard. Our focus is on protograph-based LDPC codes [7], which
are very attractive from a design perspective and allow for a high-speed hardware im-
plementation, suitable for fiber-optical communications [8]. A protograph is a (small)
bipartite graph, from which the Tanner graph defining the code is obtained by a copy-
and-permute procedure. As one illustrative example for protograph-based codes, we
consider the AR4JA protographs developed by researchers from JPL/NASA in [9]. We
also consider bit mapper optimization for protograph-based spatially-coupled low-density
parity-check (SC-LDPC) codes using the windowed decoder (WD) proposed in [10]. SC-
LDPC codes, originally introduced as LDPC convolutional codes in [11], have attracted
a lot of attention due to their capacity-achieving performance under belief propagation
(BP) decoding for a variety of communication channels [12]. SC-LDPC codes can be
constructed using protographs and they are considered as viable candidates for future
spectrally efficient fiber-optical systems [8].
Most of the literature about bit mapper optimization deals with irregular LDPC codes

that are not based on protographs, see e.g., [13, 14]. Attempts to improve the perfor-
mance of BICM systems with protograph-based codes through bit mapper optimization
have been previously made in [15–17]. In [15], a mapping strategy inspired by the water-
filling algorithm for parallel channels called variable degree matched mapping (VDMM)
is presented. This idea is extended in [16], where the authors exhaustively search over
all possible nonequivalent connections between protograph nodes and modulation bits
showing performance improvements over VDMM. As pointed out in [17], the above ap-
proaches are somewhat restrictive in the sense that only certain protographs can be used
with certain modulation formats. A more flexible approach is proposed in [17], which is
in principle suitable for any protograph structure and modulation but relies on a larger
intermediate protograph.
Our optimization of the bit mapper is based on the decoding threshold over the addi-

tive white Gaussian noise (AWGN) channel similar to, e.g., [13, 14, 16], albeit assuming
a fixed number of decoding iterations. The decoding threshold divides the channel qual-

A4



2 System Model

ity parameter range (in our case the equivalent signal-to-noise ratio (SNR) of the GN
model) into a region where reliable decoding is possible and where it is not. In the
asymptotic case, i.e., assuming infinite codeword length, density evolution (DE) or one-
dimensional simplifications via extrinsic information transfer (EXIT) functions can be
used to find the decoding threshold for LDPC codes under BP decoding [18]. Approxi-
mate decoding thresholds of protograph-based codes assuming binary modulation can be
obtained by using the protograph extrinsic information transfer (P-EXIT) analysis [19].
The approach proposed here relies on a modified P-EXIT analysis which allows for a
fractional allocation between protograph nodes and modulation bits. This approach is,
to the best of our knowledge, novel in the context of protograph-based codes and dif-
ferent from the approaches described in [15–17]. In particular, a fractional allocation
allows for an unrestricted matching of protographs and modulation formats and addi-
tionally does not suffer from an increased design complexity due to a larger intermediate
protograph. We also discuss several ways to reduce the optimization complexity. In
particular, we introduce periodic bit mappers for SC-LDPC codes with a WD, which is
based on the results we previously presented in [20], where optimized bit mappers are
found for (nonprotograph-based) SC-LDPC codes assuming parallel binary erasure chan-
nels (BECs) without considering the WD. The use of a WD in this paper is motivated
by the reduced complexity and decoding delay with respect to full decoding. Finally, we
provide a simulative verification assuming both linear and nonlinear transmission sce-
narios. For the latter case, we use the split-step Fourier method (SSFM) to show that
the performance improvements predicted from the AWGN analysis can be achieved for
a realistic transmission scenario including nonlinear effects.

1.1 Notation

Vectors and matrices are typeset in bold font by lowercase letters a and capital letters
A, respectively. Matrix transpose is denoted by ( · )ᵀ, Hermitian transpose by ( · )†, and
the squared norm of a complex vector by ‖a‖2. In denotes the identity matrix of size
n. Complex conjugation is denoted by ( · )∗. δ(t) is Dirac’s delta function, whereas
δ[k] is the Kronecker delta. Convolution is denoted by �. N0, R, and C denote the
set of nonnegative integers, real numbers, and complex numbers, respectively. Random
variables and vectors are denoted by capital letters and their realizations by lowercase
letters. The probability density function (PDF) of a random variable Y conditioned on
the realization of another random variable X is denoted by fY |X(y|x) and the expected
value by E[ · ].
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Figure 1: Block diagram of the consider fiber-optical transmission system.

2 System Model

2.1 Continuous-Time Channel
We consider transmission of a polarization-multiplexed (PM) signal over a standard
single-mode fiber (SSMF) with a lumped amplification scheme as shown in Fig. 1.
The optical link consists of Nsp spans of SSMF with length Lsp. The baseband sig-
nal in each polarization is generated via a linear pulse modulation according to sx(t) =∑
k sx,kp(t − k/Rs), where sx,k ∈ C are the information symbols, p(t) the real-valued

pulse shape, and Rs the symbol rate. (We give expressions for polarization x only, if
polarization y has an equivalent expression.) The PM signal s(t) = (sx(t), sy(t))ᵀ is
launched into the fiber and propagates according to [21, Ch. 3]

∂v(t, z)
∂z

= −α− g(z)
2 v(t, z)− β2

2
∂2v(t, z)
∂t2

+ γv(t, z)‖v(t, z)‖2 + w(t, z), (A.1)

where v(t, z) is the complex baseband representation of the electric field and the input to
the first fiber span and the output signal are s(t) = v(t, 0) and r(t) = v(t,NspLsp), respec-
tively. In (A.1), α is the attenuation coefficient, β2 the chromatic dispersion coefficient,
and γ the nonlinear Kerr parameter. The terms g(z) and w(t, z) = (wx(t, z), wy(t, z))ᵀ
model the amplifier gain and the generated ASE noise [22, p. 84]. Each EDFA in-
troduces circularly symmetric complex Gaussian noise with two-sided power spectral
density (PSD) N` = (G − 1)hνsnsp [1, eq. (54)] per polarization, where G = eαLsp

is the amplifier gain, h is Planck’s constant, νs the carrier frequency, and nsp the
spontaneous emission factor. A standard coherent linear receiver is used, consisting
of an equalizer, a pulse-matched filter and a symbol-time sampler. This amounts to
rx,k = rx(t) � h(t) � p(−t)|t=k/Rs , where the frequency response of the equalizer h(t) is
H(f) = exp(2β2π

2f2NspLsp).

2.2 Discrete-Time Channel
An approximate discrete-time model for the received samples rk = (rx,k, ry,k)ᵀ based
on the transmitted symbols sk = (sx,k, sy,k)ᵀ is given by rk ≈ ζsk + nk + ñk, where
ζ ∈ C [5]. The term nk = (nx,k, ny,k)ᵀ accounts for the linear ASE noise with E[NkN†k′ ] =
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Figure 2: (a) BICM block diagram including the channel symmetrization technique. (b) Ap-
proximate model with parallel Gaussian LLR channels.
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Figure 3: The considered signal constellations in each dimension.

PASEI2δ[k − k′], where PASE = NspN`Rs. The term ñk = (ñx,k, ñy,k)ᵀ accounts for
nonlinear noise with E[ÑkÑ†k′ ] = ηP 3I2δ[k−k′], where P = limT→∞(

∫ T
−T sx(t)2 dt)/(2T )

is the transmit power per polarization (assumed to be equal for both polarizations). η is
a function of the link parameters α, β2, γ, Lsp, Nsp and the symbol rate Rs [5, eq. (15)],
and |ζ|2 = 1 − |η|P 2. The conditional PDF in this model is assumed to be Gaussian
according to

fRk|Sk(rk|sk) = 1
(πPN)2 exp

(
−‖rk − ζsk‖

2

PN

)
, (A.2)

where PN = PASE + ηP 3. The equivalent SNR is defined as ρ , |ζ|2P/(PASE + ηP 3).

2.3 Bit-Interleaved Coded Modulation

The transmitted symbols sk in each time instant k take on values from a discrete signal
constellation X ⊂ C2. Each point in the constellation is labeled with a unique binary
string of length m = log2 |X |, where bi(a), 1 ≤ i ≤ m, denotes the ith bit in the
binary string assigned to a ∈ X (counting from left to right). Consider now the block
diagram shown in Fig. 2(a), where the modulo 2 addition of di,k and multiplication
by d̄i,k = (−1)di,k is explained further below and can be ignored for now. At each
time instant k, the modulator Φ takes m bits bi,k, 1 ≤ i ≤ m, and maps them to one
of the constellation points according to the binary labeling. We consider two product
constellations of one-dimensional constellations labeled with the binary reflected Gray
code (BRGC) as shown in Fig. 3, which we refer to as PM-64-QAM and PM-256-QAM.
At the receiver, the demodulator Φ−1 computes soft reliability information about the
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transmitted bits in the form of the log-likelihood ratios (LLRs)

li,k , log
fRk|Bi,k(rk|0)
fRk|Bi,k(rk|1) = log

∑
s∈Xi,0 fRk|Sk(rk|s)∑
s∈Xi,1 fRk|Sk(rk|s) , (A.3)

where Xi,u , {a ∈ X : bi(a) = u} is the subconstellation where all points have the bit u
at the ith position of their binary label.
A useful way to think about the setup depicted in Fig. 2(a) is to imagine transmitting

over a set of parallel bit channels, where one may interpret the conditional distribution
of the LLR fLi,k|Bi,k( · | · ) as a bit channel. In the following, we say that a bit channel
fL|B(l|b) is symmetric if fL|B(l|0) = fL|B(−l|1) and the channel is referred to as an LLR
channel if fL|B(l|0)el = fL|B(l|1). One can show that fLi,k|Bi,k( · | · ) is an LLR channel,
but not necessarily symmetric in general. Symmetry can be enforced by adding modulo
2 independent and identically distributed bits di,k to the bits bi,k and multiplying the
corresponding LLR by d̄i,k (see Fig. 2(a)) [23]. The symmetry condition is an important
requirement for the analysis in Section 3.3, where one implicitly relies on the assumption
that the all-zero codeword has been transmitted [24, p. 389].
To simplify the analysis, the original bit channels are replaced with parallel symmetric

Gaussian LLR channels, as shown in Fig. 2(b), where an LLR channel fL|B(l|b) is called a
symmetric Gaussian LLR channel with parameter σ2 if L ∼ N (σ2/2, σ2) conditioned on
B = 0 and L ∼ N (−σ2/2, σ2) conditioned on B = 1. In order to find a correspondence
between the LLR channels fLi,k|Bi,k( · | · ) and the parameters σ2

i , one may match the
mutual information (MI) according to σ2

i = J−1(Ii(ρ))2, where Ii(ρ) = I(Bi,k;Li,k) is
independent of k and J(σ) denotes the MI between the output of a symmetric Gaussian
LLR channel and uniform input bits. As an example and to visualize the different bit
channel qualities, in Fig. 4 we compare the LLR channels (solid lines, estimated via
histograms) with the approximated Gaussian LLR channels (dashed lines) assuming an
AWGN channel and two different values of ρ for the three distinct bit channels of PM-64-
QAM (see Fig. 3(a)). It can be seen that the actual densities are clearly non-Gaussian.
However, the Gaussian approximation is quite accurate for the bit mapper optimization
as shown later and allows for a major simplification of the analysis, thereby justifying its
use.
Consider now the case where a binary code C ⊂ {0, 1}n of length n and dimension d is

employed and each codeword c = (c1, . . . , cn) is transmitted using N = n/m symbols sk.
The allocation of the coded bits to the modulation bits (i.e., the different bit channels in
Fig. 2(b)) is determined by a bit mapper as shown in Fig. 5, where the vectors b1, . . . , bm
are of length N . Our goal is to find good bit mappers for a fixed code and modulation. As
a baseline, we consider a consecutive mapper according to bi,k = c(k−1)m+i for 1 ≤ i ≤ m,
1 ≤ k ≤ N .

A8



3 Protograph-Based LDPC Codes

0

0.2

0.4

0.6

0.8

−5 0 5 10 15

l

fLi,k|Bi,k
(l|0)

i = 2

i = 1

i = 3

(a) ρ = 10 dB

0

0.05

0.10

0.15

−5 0 5 10 15 20 25 30

l

fLi,k|Bi,k
(l|0)

0.20

i = 2

i = 1

i = 3

(b) ρ = 17 dB

Figure 4: Comparison of the LLR channels for PM-64-QAM including channel symmetrization
(solid lines) with the Gaussian LLR channels that have the same MI (dashed lines).
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Figure 5: Block diagram illustrating the purpose of the bit mapper.

3 Protograph-Based LDPC Codes

An LDPC code of length n and dimension d is defined via a sparse parity-check matrix
H = [hi,j ] ∈ {0, 1}c×n, where c = n−d. There exist different methods to construct “good”
LDPC codes, i.e., good matrices H. One popular method is by using protographs [7].
An LDPC code can be represented by using a bipartite Tanner graph consisting of n
variable nodes (VNs) and c check nodes (CNs), where the ith CN is connected to the
jth VN if hi,j = 1. A protograph is also a bipartite graph defined by an adjacency
matrix P = [pi,j ] ∈ Nc

′×n′
0 , called the base matrix. Given P, a parity-check matrix H

is obtained by replacing each entry pi,j in P with a random binary M -by-M matrix
which contains pi,j ones in each row and column. This procedure is called lifting and
M ≥ maxi,j pi,j is the so-called lifting factor. Graphically, this construction amounts to
copying the protograph M times and subsequently permuting edges. Parallel edges, i.e.,
for pi,j > 1, are permitted in the protograph and are resolved in the lifting procedure.
The design rate of the code is given by R = 1 − c/n = 1 − c′/n′, where c = c′M and
n = n′M .
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3.1 AR4JA Codes
As one example to illustrate the bit mapper optimization technique, we consider the
AR4JA code family defined by the protographs in [9, Fig. 8]. The base matrix P(`) of
the AR4JA code ensemble with parameter ` ∈ N0 can be recursively defined via [17]

P(`) =

P(`−1)
0 0
3 1
1 3

 , P(`=0) =

1 2 0 0 0
0 3 1 1 1
0 1 2 2 1

 (A.4)

with c′ = 3 and n′ = 5 + 2`. VNs corresponding to the second column of the base matrix
are punctured, leading to a design rate of R = (1− c′/n′) ·n′/(n′ − 1) = (`+ 1)/(`+ 2).

3.2 Spatially Coupled LDPC Codes
SC-LDPC codes have parity-check matrices with a band-diagonal structure (for a gen-
eral definition see, e.g., [12]). For completeness, we briefly review the construction via
protographs in [25], [10, Sec. II-B]. The base matrix P[T ] of a (J,K) regular, protograph-
based SC-LDPC code with termination length T can be constructed by specifying ma-
trices Pi, 0 ≤ i ≤ ms of dimension J ′ by K ′, where ms is referred to as the memory.
The matrices are such that P =

∑ms
i=0 Pi has column weight J and row weight K for all

columns and rows, respectively. Given T and the matrices Pi, the base matrix P[T ] is
constructed as

P[T ] =



P0

P1
. . .

... . . . P0

Pms

. . . P1

. . . ...
Pms


. (A.5)

From the dimensions of P[T ] one can infer a design rate of R(T ) = 1−(T +ms)J ′/(TK ′).
As T grows large, the rate approaches R(∞) = 1− J ′/K ′.
Since our goal is not to optimize the code, we rely on base matrices that have been

proposed elsewhere in the literature, in particular in combination with a WD which we
discuss below. We consider P0 = (2, 2, 2) and P1 = (1, 1, 1) according to [10, Design rule
1], where J ′ = 1, K ′ = 3, ms = 1, and R(∞) = 2/3.

3.3 Decoding and Asymptotic EXIT Analysis
We use a modified version of the P-EXIT analysis as a tool to predict the iterative
BP performance behavior of the protograph-based codes [19]. A detailed description
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Algorithm 1: P-EXIT analysis of the WD for a (J,K) regular SC-LDPC proto-
graph.

Input: lmax (max. iterations per window), ptar (target error probability), W , (J ′,K′),
ρ

Output: S (decoding success, either true or false), ls (iterations until successful
decoding)

1 for i = 1 to n′ do /* initialization of channel variances for VNs */
2 if VN i is punctured set σ2

i = 0 /* treat as an erasure */
3 else set σ2

i = f(ρ) /* E.g.,f(ρ) = 8Rρ if ρ = Eb/No [24] */

4 ls = 0 /* total iteration counter */
5 for j = −W + 2 to T do
6 cstart ← max((j − 1)J ′ + 1, 1) /* first index of active CNs */
7 cend ← min((W + j − 1)J ′,m) /* last index of active CNs */
8 vstart ← max((j − 1)K′ + 1, 1) /* first index of active VNs */
9 vend ← min((W + j − 1)K′, n′) /* last index of active VNs */

10 tstart ← max((j − 1)K′ + 1, 1) /* first index of target VNs */
11 tend ← max((j − 1)K′ +K′,K′) /* last index of target VNs */
12 l = 0
13 while l ≤ lmax do
14 if mean (error probability of VN tstart to tend) < ptar break while
15 for i = vstart to vend compute Messages (σ2

i ) of VN i /* Eq. (9.46) [24]
*/

16 for i = cstart to cend compute Messages of CN i /* Eq. (9.47) [24] */
17 l← l + 1 and ls ← ls + 1

18 if mean (error probability of VN 1 to n′) < ptar set S = 1 else set S = 0

of this tool for binary modulation is available in [19] and [24, Algorithm 9.2]. Here,
we only describe the necessary modifications to account for the WD and the nonbinary
modulations. We start with the former and explain the latter in the next section.

We employ the WD scheme developed in [10]. WD helps to alleviate the long decoding
delays and high decoding complexity of SC-LDPC codes under full BP decoding by
exploiting the fact that two VNs are not involved in the same parity-check equation if
they are at least (ms + 1)K ′ columns apart [10]. The WD restricts message updates to a
subset of VNs and CNs in the entire graph. After a predetermined number of decoding
iterations, this subset changes and the decoding window slides to the next position.
Pseudocode for the modified P-EXIT analysis of SC-LDPC codes accounting for the WD
is presented in Algorithm 1. The main difference with respect to BP decoding is the
window size parameter W , which specifies the number of active CNs in the protograph
considered in each window as a multiple of J ′. The P-EXIT analysis for the standard
BP decoder can be recovered from Algorithm 1 by setting T = 1, W = 1, J ′ = c′, and
K ′ = n′.
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4 Bit Mapper Optimization

4.1 Asymptotic Bit Mapper Model
Each VN in the protograph represents M VNs in the lifted Tanner graph. Since a VN
corresponds to one bit in a codeword, the n′ VNs in the protograph give rise to n′

different classes of coded bits that are treated as statistically equivalent in the P-EXIT
analysis. In particular, for binary modulation, each protograph VN is assigned with one
input variance, corresponding to either a punctured bit or the Gaussian LLR channel (see
lines 2 and 3 in Algorithm 1). For nonbinary modulations, VNs in the same class can in
principle have different input densities. Assume for example that a given protograph is
lifted with an even lifting factor M and coded bits are mapped consecutively to a 4-ary
modulation. Then, M/2 VNs in each class are allocated to the first modulation bit and
M/2 to the second.
We model the bit mapper by specifying the assignment of VN classes to the bit channels

via a matrix A = [ai,j ] ∈ Rm×n′ , where ai,j , 0 ≤ ai,j ≤ 1 ∀i, j denotes the proportional
allocation of VNs from the jth class (corresponding to the jth column in the base matrix)
allocated to the ith bit in the signal constellation. The approaches in [15–17] can be
recovered by considering only nonfractional assignments, i.e., ai,j ∈ {0, 1}. In that case,
VNs of the original protograph [15, 16] or an intermediate protograph [17] are directly
assigned to the modulation bits.
We point out that, instead of interpreting ai,j as a deterministic fraction of VNs

in a particular class allocated to a particular channel, one should interpret ai,j as a
probability, and study the bit mapper as a probabilistic mapping device that assigns
coded bits randomly to channels, similar to [26]. Under this assumption, one may argue
that the VNs belonging to a certain class “see” an equivalent bit channel which is the
average of the original bit channels fLi,k|Bi,k(l|b), weighted according to the probabilities
ai,j . The MI of each equivalent bit channel is a weighted average of the original channels’
MI as shown in the following lemma.

Lemma 1. Let {fLi|Bi(l|b) : 1 ≤ i ≤ m} be a collection of symmetric LLR channels.
Consider a new channel fL|B(l|b), where transmission takes place over the ith channel
in the collection with probability αi and

∑
i αi = 1. Then I(L;B) =

∑
i αiI(Li;Bi) for

uniform input bits.

Proof. The channel fL|B(l|b) is a symmetric LLR channel. The claim then follows from
fL|B(l|b) =

∑
i αifLi|Bi(l|b) and the fact that the MI between the output of a symmetric

LLR channel fL|B(l|b) and uniform input bits is I(L;B) = 1 −
∫∞
−∞ fL|B(l|0) log2(1 +

e−l) dl.
If we collect the MI corresponding to the originalm symmetric LLR channels in a vector

I(ρ) = (I1(ρ), . . . , Im(ρ)), then, multiplying I(ρ) by A leads to a vector (Ĩ1, Ĩ2, . . . , Ĩn′)
with the MIs corresponding to the averaged bit channels as seen by the n′ VN classes.
These averaged bit channels are modeled as symmetric Gaussian LLR channels with
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parameters (σ2
1 , . . . , σ

2
n′). In particular, the P-EXIT analysis for nonbinary modulation

is obtained by changing the initialization step in line 3 of Algorithm 1 and assigning
σ2
i = J−1(Ĩi)2, where the algorithm takes A as an additional input to compute Ĩi as

described.
In order to have a valid probabilistic assignment, all columns in A have to sum to one

and all rows in A have to sum to n′/m, i.e., we have mn′ equality constraints in total.
The first condition ensures that, asymptotically, all VNs are assigned to a channel, while
the second condition ensures that all parallel channels are used equally often. The set
of valid assignment matrices is denoted by Am×n′ ⊂ Rm×n′ . In the case of punctured
VNs, the corresponding columns in A are removed and n′ is interpreted as the number
of unpunctured VNs.

4.2 Optimization
For a given bit mapper, i.e., for a given assignment matrix A, an approximate decoding
threshold ρ∗(A) can be found using Algorithm 1 as follows. Fix a certain precision δ,
target bit error probability ptar, and maximum number of iterations lmax. Starting from
some SNR ρ where Algorithm 1 converges to a successful decoding, S = 1, iteratively
decrease ρ by δ until the decoding fails. The smallest ρ for which S = 1 is declared as
the decoding threshold ρ∗(A). For any ρ ≥ ρ∗(A), we denote the number of iterations
until successful decoding by ls(A, ρ).
We are interested in optimizing A in terms of the decoding threshold for a given

protograph and modulation format. The optimization problem is thus

Aopt = argmin
A∈Am×n′

ρ∗(A), (A.6)

where the baseline system realizes a mapping of coded bits to modulation bits such that
ai,j = 1/m, ∀i, j, resulting in identical variances σ2

i for the equivalent bit channels of all
VN classes. The corresponding assignment matrix is denoted by Auni. The search space
Am×n′ can be regarded as a convex polytope P in p = (m − 1)(n′ − 1) dimensions
by removing the last row and column in A, replacing the equality constraints with
inequality constraints, and writing the matrix elements in a vector x ∈ Rp according
to the prescription x(i−1)n′+j = ai,j for 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n′ − 1. While
the search space is convex, one can show by simple examples that the objective function
is nonconvex in P. In the following, we discuss ways to obtain good bit mappers with
reasonable effort. We also remark that some of the optimization approaches proposed
previously in the context of bit mapper optimization for irregular LDPC codes are not
necessarily appropriate in our case due to the higher number of VN classes, i.e., they
can be too complex (for example the iterative grid search in [13]) or do not explore the
search space efficiently (simple hill climbing approaches as in [14]).

First, as an alternative to directly optimizing the decoding threshold, we iteratively
optimize the convergence behavior in terms of the number of iterations until successful
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decoding as follows. Initialize ρ to the decoding threshold for the baseline bit mapper,
i.e., ρ = ρ∗(Auni). Find A∗ such that it minimizes the number of decoding iterations
until convergence for the given ρ, i.e.,

A∗ = argmin
A∈Am×n′

ls(A, ρ). (A.7)

For the found optimized A∗, calculate the new decoding threshold ρ∗(A∗). If the threshold
did not improve, stop. Otherwise, set ρ = ρ∗(A∗) and repeat the optimization. The
above iterative approach was already used by the authors to find good bit mappers
for SC-LDPC codes in [20] for parallel BECs. This approach is largely based on the
ideas presented in [27, Sec. IV], where optimized degree distributions for irregular LDPC
codes are found. The computational complexity can be significantly reduced compared
to the threshold minimization (A.6). However, it is not guaranteed to be equivalent
to a true threshold optimization, i.e., in general Aopt 6= A∗. We employ differential
evolution [28] to solve the optimization problem in (A.7), which has been previously
applied by many authors in the context of irregular LDPC codes [24, p. 396]. Differential
evolution is a solver for unconstrained optimization problems and we briefly indicate how
the algorithm is modified to account for the constrained search space. First, since Am×n′

can be regarded as a convex polytope, it is straightforward to take uniformly distributed
points for the initial population via standard random walk procedures [29]. Second, if
the algorithm generates a trial point xt that lies outside the polytope, we apply the
following randomized bounce-back strategy. Let L be the line segment connecting xt
and a random point inside the polytope, and let xi be the intersecting point of L and
the boundary of P. We replace xt with a point taken randomly from L, such that it
lies in P and has at most a distance d from xi, where d is the distance between xi and
xt. For a detailed description of the algorithm itself and some guidelines regarding the
optimization parameter choice, we refer the reader to [28].
The optimization complexity is further reduced by constraining the maximum number

of iterations lmax. Practical systems commonly operate with a relatively small number
of BP iterations. For example, in Sec. 5, we assume 50 BP iterations, and hence the
decoding thresholds are optimized for the same number of iterations. In the simulative
verification, we have observed that the performance of the finite-length codes assuming 50
BP iterations is generally better using a bit mapper that is also optimized for lmax = 50
compared to, say, lmax = 1000, although the differences were small.
Additionally, for SC-LDPC codes, we take advantage of the structure of the optimized

bit mappers for parallel BECs [20], which show a certain form of periodicity. The opti-
mization complexity can then be reduced by assuming that the optimal solution lies in a
lower-dimensional subspace of P, defined by assignment matrices that take on a periodic
form as A = (A′,A′′,A′′, · · · ,A′′,A′′′), with m × V matrices A′, A′′, and A′′′, where
V is the periodicity factor. If V is chosen small enough, the dimensionality of the search
space (i.e., (m− 1)(3V − 1)) can be substantially reduced, which generally improves the
convergence speed of the differential evolution algorithm.
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The methods and complexity reduction techniques described above have been selected
to obtain a good trade-off between final performance and design complexity. In certain
cases, for example the considered AR4JA code in the next section, it could be possible
to further improve the performance at the expense of a higher design complexity by
directly targeting the decoding threshold optimization (A.6) without the need for the
iterative optimization (albeit we expect the improvements to be incremental). On the
other hand, for the considered SC-LDPC code, the iterative optimization and periodicity
assumptions were critical to maintain a reasonable design complexity, which is mainly
due to the very large number of protograph VNs.

5 Results and Discussion
In this section, we present and discuss numerical results, and illustrate the performance
gains that can be achieved by employing optimized bit mappers. For the baseline systems,
we use a consecutive mapping of coded bits to modulation bits. Alternatively, one may
use a uniformly random mapping, which has the same expected performance.

In order to show the flexibility of the technique, we consider four different scenarios,
combining both modulation formats with one code based on the AR4JA protographs and
one SC-LDPC code, where the lifting factor is M = 3000 in all cases. For simplicity,
the codes are randomly generated without further consideration of the graph structure.
The protograph lifting procedure can in principle be combined with standard techniques
to avoid short graph cycles that may potentially lead to high error floors [24, Ch. 6.3].
Alternatively, an additional outer algebraic code may be assumed, which removes re-
maining errors to achieve a required target BER of 10−15. A rate R = 2/3 code based on
the AR4JA protograph for ` = 1 is used, which is denoted by CAR4JA. For the spatially
coupled case with T = 30, a code based on the protograph described in Sec. 3.2 is used,
which is denoted by CSC. For the given value of T , the design rate is R(30) = 0.656.
For the AR4JA code, standard BP decoding is assumed with lmax = 50, while for the
SC-LDPC codes, we employ a WD with W = 5 and lmax = 10, which again amounts to
a total of 50 iterations per decoded bit. We also tried other combinations of W and lmax
with a similar total number of iterations and this combination gave the best performance.
For the bit mapper optimization and in particular the P-EXIT analysis, we use the same
values for lmax and W , and additionally ptar = 10−5. The finite-length bit mappers are
obtained via the rounded matrix MA∗ from which the index assignment of coded bits
to modulation bits is determined.

Notice that in all four scenarios, the approaches in [15–17] are either not possible (due
to a mismatch between the number of protograph VNs and the number of modulation
bits) or not feasible (due to the large complexity of the resulting optimization). As an
example, the protograph corresponding to CSC has 90 VNs and can be directly connected
to the three distinct bit channels of PM-64-QAM. This leads, however, to a very large
number of possible (nonfractional) connections between protograph VNs and modulation
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(a) CAR4JA with BP decoding and lmax = 50
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Figure 6: Comparison of the optimized bit mappers (blue) with the baseline bit mappers (red)
for the linear transmission scenario. Dashed lines correspond to P-EXIT analysis and
solid lines to simulation results. In (b), solid green lines correspond to the P-EXIT
analysis for V = 6.

bits.

5.1 Linear Transmission
We start by providing a verification of the proposed optimization technique assuming an
AWGN channel. This case is obtained when nonlinear effects are ignored, i.e., γ = 0. In
this case, the channel PDF (A.2) is valid without approximations.
In Fig. 6(a), the predicted bit error rate (BER) of the AR4JA code via the P-EXIT

analysis is shown together with Monte Carlo simulations by the dashed and solid lines,
respectively. Performance curves for the baseline bit mappers are shown in red and for
the optimized ones in blue. As a reference, we also plot the BER-constrained [24, p. 17]
generalized mutual information (GMI) for the corresponding spectral efficiency in each
figure (the GMI is also referred to as the BICM capacity [30]). For both scenarios,
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it can be observed that the optimized bit mappers lead to a significant performance
improvement. The gains that can be achieved at a BER of 10−5 are approximately
0.19 and 0.25 dB for PM-64-QAM and PM-256-QAM, respectively. The predicted gains
from the P-EXIT analysis for the same BER is slightly less, i.e., 0.12 and 0.19 dB,
respectively. The deviation of the asymptotic analysis from the actual simulation results
is to be expected due to the Gaussian approximation of the LLR densities and the finite
lifting factor and, hence, finite block lengths of the codes. However, it is important to
observe that, even though the optimization was carried out assuming a cycle-free graph
structure, the predicted performance gains for the finite-length codes is well preserved.

Similarly, the performance of the SC-LDPC code is shown in Fig. 6(b). The periodicity
factor for the bit mapper optimization was set to V = 3. The observed gains at a BER of
10−5 are approximately 0.20 dB for PM-64-QAM and 0.25 dB for PM-256-QAM. We also
show the predicted P-EXIT performance obtained for bit mappers that are optimized
assuming a larger periodicity factor of V = 6 by the solid green curves. It can be seen
that for both modulation formats, the additional gains are incremental, i.e., for PM-64-
QAM the predicted performance curves virtually overlap, while for PM-256-QAM, the
difference is roughly 0.01 dB. This suggests that a full optimization of A will be only
marginally better than with V = 3.
From Fig. 6, it appears that the P-EXIT analysis consistently underestimates the

finite-length performance improvement for the AR4JA code, while it overestimates the
improvement for the SC-LDPC code. This observation does, however, not apply in
general and seems to be coincidental. In particular, we also optimized the bit mapper
for AR4JA codes of different code rates (results not shown), and the P-EXIT analysis
may also underestimate the true performance improvements in that case. Moreover, we
would like to stress that a direct comparison between the two codes is difficult, because
of the slightly different code rates (and hence spectral efficiencies) and different decoding
complexities and delays. Fair comparisons between SC-LDPC codes and LDPC block
codes is an active area of research and beyond the scope of this paper.

5.2 Nonlinear Transmission
In this section, we consider a transmission scenario including nonlinear effects, i.e., γ 6= 0,
where the assumed channel PDF (A.2) is only approximately valid. In particular, we
study the potential increase in transmission reach that can be obtained by employing the
optimized bit mappers.

We consider a single channel transmission scenario to keep the simulations within
an acceptable time. In the simulation model, we assume perfect knowledge about the
polarization state, and perfect timing and carrier synchronization. All chosen system
parameters are summarized in Table 1. Additionally, we use a root-raised cosine pulse
p(t) with a roll-off factor of 0.25. In order to solve (A.1), we employ the symmetric
SSFM with two samples per symbol and a fixed step size of ∆ = (10−4L2

DLNL)1/3, where
LD = 1/(|β2|R2

s) and LNL = 1/(γP ) is the dispersive and nonlinear length, respectively.
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parameter meaning value
Rs symbol rate 40 Gbaud
Lsp span length 70 km
α attenuation coefficient (0.25 dB/km) 0.0576 km−1

β2 chromatic dispersion coefficient -21.668 ps2/km
γ nonlinear Kerr parameter 1.4 W−1 km−1

νs carrier frequency (1550 nm) 1.934× 1014 Hz
nsp spontaneous emission factor 1.622

Table 1: System parameters
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Figure 7: Comparison of the optimized bit mappers (blue) with the baseline bit mappers (red)
for the nonlinear transmission scenario.

The input power that maximizes ρ according to the GN model varies between −2.2 dBm
forNsp = 10 and −2.6 dBm forNsp = 40. For simplicity, the input power per polarization
is fixed to P = −2.5 dBm for all values of Nsp.
In Fig. 7, the simulated BER of the PM systems using CAR4JA and CSC is shown as

a function of the number of fiber spans Nsp by the dashed and solid lines, respectively.
Again, curves corresponding to the baseline bit mappers are shown in red, while curves
corresponding to the optimized bit mappers are shown in blue. Notice that the SNR
decrease (in dB) is not linear with increasing number of spans, hence the different slopes
compared to the curves shown in Fig. 6. For PM-256-QAM, the transmission reach can
be increased by roughly one additional span for both codes, at the expense of a slightly
increased BER. For example, for CSC, the transmission reach can be increased from 12
to 13 spans, while the BER slightly increases from 10−5 to 3 · 10−5. For PM-64-QAM,
the increase is roughly 1 span for CAR4JA and roughly 2 spans for CSC. In fact, these
gains can be approximately predicted also from the GN model. For example, for the
chosen input power and system parameters, the GN model predicts an SNR decrease of
roughly 0.3 dB from Nsp = 12 to Nsp = 13 and 0.15 dB from Nsp = 34 to Nsp = 35, i.e.,
one would expect the performance improvements in the linear transmission scenario to
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translate into roughly one additional span for PM-256-QAM and one to two additional
spans for PM-64-QAM. This estimate corresponds to an increase of the transmision reach
by 3–8%, which is well in line with the simulation results presented in Fig. 7.

6 Conclusion
In this paper, we studied the bit mapper optimization for a PM fiber-optical system.
Focusing on protograph-based codes, an optimization approach was proposed based on
a fractional allocation of protograph bits to modulation bits via a modified P-EXIT
analysis. Extensive numerical simulations were used to verify the analysis for a disper-
sion uncompensated link assuming both linear and nonlinear transmission regimes. The
results show performance improvements of up to 0.25 dB, translating into a possible
extension of the transmission reach by up to 8%.
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1 Introduction

Abstract

We study the design of spectrally efficient fiber-optical communication
systems based on different spatially-coupled (SC) forward error correc-
tion (FEC) schemes. In particular, we optimize the allocation of the
coded bits from the FEC encoder to the modulation bits of the signal
constellation. Two SC code classes are considered. The codes in the
first class are protograph-based low-density parity-check (LDPC) codes
which are decoded using iterative soft-decision decoding. The codes in
the second class are generalized LDPC codes which are decoded using
iterative hard-decision decoding. For both code classes, the bit alloca-
tion is optimized for the terminated and tailbiting SC cases based on a
density evolution analysis. An optimized bit allocation can significantly
improve the performance of tailbiting SC codes codes over the baseline
sequential allocation, up to the point where they have a comparable
gap to capacity as their terminated counterparts, at a lower FEC over-
head. For the considered terminated SC codes, the optimization only
results in marginal performance improvements, suggesting that in this
case a sequential allocation is close to optimal.

1 Introduction
Designing spectrally efficient fiber-optical systems that can operate close to the ca-
pacity limits [1] has become an important research topic [2–4]. Such systems are of-
ten implemented according to the pragmatic bit-interleaved coded modulation (BICM)
paradigm [5], where a single binary forward error correction (FEC) encoder is used in
combination with a nonbinary signal constellation. A random allocation (or interleav-
ing) [5] of the coded bits from the FEC encoder to the modulation bits of the signal
constellation is commonly assumed. In this paper, we optimize the allocation to the
modulation bits for a coherent long-haul polarization-multiplexed (PM) fiber-optical sys-
tem. In particular, we consider different spatially-coupled (SC) FEC schemes both with
soft-decision decoding (SDD) and hard-decision decoding (HDD).

SC low-density parity-check (SC-LDPC) codes have attracted a great deal of attention
in the recent years. They are considered as viable candidates for future spectrally effi-
cient fiber-optical systems [3, 6, 7] due to their capacity-achieving performance for many
communication channels [8]. SC-LDPC codes promise excellent belief propagation (BP)
performance with a quasi-regular node degree distribution and low node degrees. The BP
performance of SC-LDPC codes can further be improved by increasing the node degrees,
whereas the decoding performance for regular LDPC codes generally worsens if the node
degrees are increased [8]. While irregular LDPC codes can also perform close to capac-
ity [9], the optimal degree distribution depends on the code rate and/or the channel [10].
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High node degrees are also often required for good performance which leads to a high
decoding complexity.
We consider two different SC code classes taken from the literature. The codes in the

first class are protograph-based SC-LDPC codes [11,12] which are decoded using iterative
SDD in the form of BP decoding. BP is a message passing algorithm in which “soft”
(i.e., real-valued) messages are exchanged between the variable nodes (VNs) and check
nodes (CNs) in the Tanner graph representing the code. The codes in the second class
are SC generalized LDPC (SC-GLDPC) codes where each coded bit is protected by two
t-error correcting Bose–Chaudhuri–Hocquenghem (BCH) component codes [13]. These
codes are decoded using iterative HDD with bounded-distance decoding (BDD) of the
component BCH codes. Iterative HDD can be seen as a message passing algorithm with
“hard” (i.e., binary) messages in the Tanner graph representing the GLDPC code and is
significantly less complex than SDD [14].
The adoption of SDD is considered one of the most important factors for increasing

the performance of fiber-optical systems [15]. However, SDD poses implementation chal-
lenges at very high data rates motivating the use of less complex FEC schemes [14]. The
SC-GLDPC codes we consider in this paper were proposed in [13], where it is shown that
they can approach the capacity of the binary symmetric channel (BSC) under iterative
HDD for high code rates (i.e., low FEC overheads (OHs)). We use these codes because
a density evolution (DE) analysis is readily available in [13]. This allows us to apply the
optimization techniques for protograph-based SC-LDPC codes we previously presented
in [16] to the practically relevant case of SC-GLDPC codes with iterative HDD. The SC-
GLDPC code ensemble in [13] is closely related to other recently proposed FEC schemes
for optical transport networks, such as staircase codes [14] (which are themselves related
to block-wise braided block codes [17]), and the modified construction of tightly-braided
block codes proposed in [18]. For other related works on GLDPC codes for fiber-optical
communications, we refer the interested reader to [19,20] and references therein.
The outstanding performance of SC codes is due to a termination boundary effect which

initiates a wave-like decoding behavior [8]. This behavior of terminated SC codes comes
at the price of a rate loss, i.e., a larger FEC OH, compared to the underlying uncoupled
codes. So-called tailbiting SC codes provide an interesting solution to this problem,
since they do not suffer from an increased OH. However, by default, a tailbiting SC code
behaves essentially the same as the underlying uncoupled code due to the absence of a
termination boundary. The main aim of this paper is to demonstrate that the unequal
error protection offered by the modulation bits of a nonbinary signal constellation can
be exploited to create an artificial termination boundary. This significantly improves the
performance of tailbiting SC codes, both in the case of SDD and HDD. With an optimized
bit allocation, the capacity gap of the considered tailbiting SC codes is comparable to the
gap of their terminated counterparts, at a lower FEC OH. For the considered terminated
SC codes, the performance gain due to an optimized bit allocation is limited, in particular
for the SC-GLDPC codes with HDD. Simulation results for both linear and nonlinear
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Figure 1: Block diagram of the considered PM transmission system.

transmission scenarios confirm the DE analysis.
The remainder of the paper is organized as follows. In Section 2, the assumed PM

transmission system is described. The two SC FEC schemes are covered in Sections 3 and
4, where we explain the code construction, the decoding algorithms, and the DE analysis
with the help of several examples. In Section 5, we briefly review the optimization
techniques for the bit allocation described in [16], which apply to the considered SC-
LDPC codes with SDD. We also discuss how they are easily extended to the SC-GLDPC
codes with HDD. Results are presented and discussed in Section 6 and the paper is
concluded in Section 7.

2 System Model
A block diagram of the considered PM fiber-optical transmission system is shown in
Fig. 1. At each discrete time instant k, the modulator Φ takes m bits bi,k, i = 1, . . . ,m,
and maps them to a symbol sk = (sx,k, sy,k) taken with uniform probabilities from a
signal constellation X ⊂ C2 (|X | = 2m) according to the binary labeling. The modulo-2
addition of the independent and uniformly distributed bits di,k (and the multiplication by
d̄i,k = (−1)di,k at the receiver) shown in Fig. 1 serves as a symmetrization technique [21].1

The baseband signal in polarization x is sx(t) =
∑
k sx,kp(t− k/Rs) with (real-valued)

pulse shape p(t) and symbol rate Rs (and similarly for polarization y). The transmit
power P = limT→∞

∫ T
−T sx(t)2dt/(2T ) is assumed to be equal in both polarizations.

The PM signal s(t) = (sx(t), sy(t)) is launched into the fiber and propagates accord-
ing to the Manakov equation [23]. The optical link consists of Nsp spans of standard
single-mode fiber (SSMF) with attenuation coefficient α, group velocity dispersion β2,
nonlinear Kerr parameter γ, length Lsp, and a lumped amplification scheme (no opti-
cal dispersion compensation is assumed). Each erbium-doped fiber amplifier (EDFA)
introduces circularly symmetric complex Gaussian noise with two-sided power spectral
density NEDFA = (eαLsp − 1)hνsnsp per polarization [1], where h is Planck’s constant,
νs the carrier frequency, and nsp the spontaneous emission factor. A coherent linear re-
ceiver according to rx,k = rx(t) � h(t) � p(−t)|t=k/Rs is used in each polarization, where
� denotes convolution and h(t) is the impulse response of an equalizer which accounts
1The symmetrization makes the bit error probability independent of the transmitted bits. This is an
important requirement for the all-zero codeword assumption which is commonly made in DE [22, p. 389].
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(bm,1, . . . , bm,N )

Figure 2: Illustration of the Bit Mapper.

for linear distortions due to chromatic dispersion. The frequency response of the equal-
izer is given by H(f) = exp(2β2π

2f2NspLsp). The received symbles are denoted by
rk = (rx,k, ry,k).
Two different demodulators Φ−1 are considered. For SDD, the demodulator computes

“soft” reliability information about the bits bi,k in the form of log-likelihood ratios (LLRs)
li,k. For HDD, the demodulator performs a minimum distance symbol-by-symbol detec-
tion of the received symbols with respect to the signal constellation X and outputs the
binary labeling associated with the detected symbol. Both demodulators are based on the
assumption that the discrete-time channel from sk to rk is the additive white Gaussian
noise (AWGN) channel with signal-to-noise ratio (SNR) denoted by ρ. This assump-
tion is accurate for linear transmission (i.e., γ = 0) where ρ = P/(NspNEDFARs). For
the considered setup without optical inline dispersion compensation, it has been shown
that this assumption is also justified, provided that dispersive effects are dominant and
nonlinear effects are weak [24, 25]. For this case, ρ can be computed using [24, eq. (15)]
assuming single channel transmission. Under the Gaussian Noise model assumption,
see [25] and references therein, similar expressions for the SNR are also computable for
wavelength-division multiplexing systems.
We consider a system according to the BICM paradigm, where a binary code C ⊂
{0, 1}nC of length nC and dimension kC is employed and each codeword c = (c1, . . . , cnC )
is transmitted using N = nC/m symbols sk. The allocation of the coded bits to the mod-
ulation bits is determined by a bit mapper2 as shown in Fig. 2, where u = (u1, . . . , ukC )
is the information word. The bit mapper optimization is discussed in Section 5. The
optimization is based on the AWGN channel model because a direct optimization using
DE for the optical channel defined by the nonlinear Schrödinger equation is not feasi-
ble. The accuracy of this approach is verified through simulation results for a nonlinear
transmission scenario in Section 6.4. To the best of our knowledge, there are no com-
parable works by other authors on bit mapper optimization for SC codes. Hence, as a
baseline for a comparison, we use a sequential mapper according to bi,k = c(k−1)m+i for
1 ≤ i ≤ m, 1 ≤ k ≤ N . For the considered codes, a sequential mapper has the same
expected performance as a random mapper.

2The bit mapper should not be confused with the modulator Φ, which is sometimes also referred to as
a mapper. In the literature, the term “bit interleaver” is also frequently used instead of “bit mapper”.
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Figure 3: Base matrices P for protograph-based SC-LDPC codes.

3 Protograph-Based SC-LDPC Codes

3.1 Code Construction
An LDPC code of length nC and dimension kC is defined via a sparse parity-check matrix
H = [hi,j ] ∈ {0, 1}rC×nC , where rC ≥ nC−kC with equality if and only if H has full rank.
One popular method to construct LDPC codes is by using protographs [11]. A protograph
is a bipartite graph defined by an adjacency matrix P = [pi,j ] ∈ Nr

′
C×n′C

0 , called the base
matrix, where N0 is the set of nonnegative integers. Given P, the parity-check matrix
H is obtained by replacing each entry pi,j in P with a random binary M -by-M matrix
which contains pi,j ones in each row and column. This procedure is called lifting and
M ≥ maxi,j pi,j is the so-called lifting factor. The design rate of the code is given by
R = 1− rC/nC = 1− r′C/n′C , where rC = r′CM and nC = n′CM .

SC-LDPC codes have parity-check matrices with a band-diagonal structure and can be
constructed using protographs [12]. The base matrix of a (J,K) regular SC-LDPC code
with spatial length T is constructed by specifying matrices Pi, 0 ≤ i ≤ ms, of dimension
J ′ by K ′, where ms is referred to as the memory. The matrices are such that

∑ms
i=0 Pi

has column weight J and row weight K for all columns and rows. Given the matrices Pi

and the spatial length T , one can construct P as shown in Fig. 3(a) for the terminated
case and in Fig. 3(b) for the tailbiting case.3 Terminated and tailbiting SC-LDPC codes
have design rates R(T ) = 1−J ′/K ′−msJ

′/(TK ′) and R = 1−J ′/K ′, respectively [12].
The rate loss for the terminated code with respect to the tailbiting (or the underlying
uncoupled regular) code can be made arbitrary small by letting T → ∞, but this also
leads to very long block lengths nC = TK ′M (assuming a fixed lifting factor M).
Example 1. Consider the (3, 6) regular SC-LDPC code with P0 = P1 = P2 = (1, 1),
3The terminology originates from the trellis representation of convolutional codes, where the initial and
final states are either determined by known bits (terminated) or forced to be identical (tailbiting).
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Figure 4: Protographs for the SC-LDPC code with T = 5 in Example 1. The first step of the
lifting procedure to obtain the Tanner graph (i.e., copying the protograph M times)
is indicated in light gray.

T = 5, J ′ = 1, K ′ = 2, and ms = 2. The two protographs corresponding to the
terminated and tailbiting cases are shown in Fig. 4. The design rates are R(5) = 0.3 and
R = 0.5, respectively. 4

3.2 Soft-Decision Decoding and Density Evolution
The protograph-based SC-LDPC codes are decoded using the standard BP decoding [22,
Sec. 5.4]. In order to alleviate the long decoding delay and high decoding complexity of
SC-LDPC codes under full BP decoding, we employ the windowed decoder (WD) with a
window size W developed in [26]. The WD reduces the decoding delay for terminated
SC-LDPC codes from TMK ′ to WMK ′ coded bits [26]. For tailbiting SC-LDPC codes,
additional memory for (ms +W −1)MK ′ values is required compared to terminated SC-
LDPC codes, in order to take the circular wrap-around of the parity-check matrix into
account. In particular, assume that the decoding starts when the channel observations
corresponding to spatial positions 1 toms+W are received and the first targeted symbols
are at position ms + 1. (Due to the circular structure, the last targeted symbols are at
position ms.) Then, the observations corresponding to the first ms positions as well as
the final LLRs for the bits at positions ms + 1 to ms + W − 1 have to be stored. We
also point the interested reader to [27], where the decoding of tailbiting SC-LDPC codes
based on a pipeline decoder architecture is discussed.
The main tool for the analysis of LDPC codes under BP decoding is DE [28]. DE

mimics the decoding process under a cycle-free graph assumption by tracking how the
densities of the LLRs evolve with iterations. Tracking the full densities (or quantized
densities in practice) is computationally demanding and extrinsic information transfer
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Figure 5: Predicted (solid lines) and finite-length (dashed lines) performance for the codes in
Examples 2 (left) and 6 (right). The codes have lengths 80 000 (a, crosses), 400 000
(a, dots), 168 000 (b, crosses), and 1 260 000 (b, dots).

(EXIT) functions [29] are usually considered to be a good compromise between compu-
tational efficiency and accuracy. For the protograph-based codes, we employ a modified
protograph EXIT (P-EXIT) analysis [30] which accounts for the different protection
levels of a nonbinary signal constellation and the WD, see [16, Algorithm 1].
Example 2. Consider the (3, 6) regular SC-LDPC code with P0 = (2, 2), P1 = (1, 1),
T = 20, J ′ = 1, K ′ = 2, and ms = 1, with rates R(T ) = 0.475 and R = 0.5, respectively.
This is a slightly different construction compared to the one in Example 1 and the
resulting codes are better suited for the use of a WD, see [26, Design Rule 1]. Assume
that transmission takes place using PM-QPSK in the linear regime and a WD with
W = 10 and lmax = 7 is used. In Fig. 5(a), we show the predicted bit error rate (BER)
obtained via the P-EXIT analysis (solid lines) together with the actual performance
of randomly generated codes (dashed lines) for two different lifting factors M = 2000
(crosses) andM = 10000 (dots) for both the terminated (blue) and tailbiting (red) cases.
Due to graph cycles, there is a mismatch between the actual performance and the DE
prediction, in particular for the smaller lifting factor. However, the P-EXIT analysis
accurately predicts the SNR region where the finite-length BER curves “bend” into their
characteristic waterfall behavior. 4
In Fig. 5(a), we also indicate the two points where the P-EXIT performance curves

cross a BER of 10−5. We refer to the SNR value of such a point as the decoding
threshold ρ∗ for a target BER = 10−5 and a given finite number of decoding iterations.
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The thresholds can be numerically computed using a bisection search over a given SNR
range. The thresholds are given by ρ∗ ≈ 0.82 dB and ρ∗ ≈ 1.19 dB for the terminated
and tailbiting codes, respectively. The better decoding thresholds and finite-length
performance of the terminated code can be explained by inspecting the structure of the
base matrix Fig. 3(a). One may verify that the CN degrees corresponding to the first
and last couple of rows are lower than the CN degrees corresponding to the rows in
between (see also Fig. 4(a)). The lower degree CNs lead to a locally better decoding
capability, which is visualized by the colored scale (green indicates a better correction
capability), at the expense of a rate loss. This termination boundary effect initiates the
wave-like decoding behavior that is characteristic for terminated SC-LDPC codes [8]. On
the other hand, for the tailbiting case, all CNs have the same degree J , hence no rate
loss is incurred and all positions are protected equally. However, this also prevents the
initiation of a decoding wave.

4 SC-GLDPC Codes with BCH Component Codes

4.1 Code Construction
We consider the (B,mc, T, w) SC-GLDPC code ensemble proposed in [13], where B is a
binary linear code of length nB and dimension kB that can correct all error patterns of
weight at most t, mc is the number of CNs per spatial position, T is the spatial length,
and w is the coupling size. In the following, we assume that B is a shortened primitive
BCH code with parameters (nB, kB) = (2ν − 1 − s, 2ν − νt − 1 − s), where ν is the
Galois field extension degree and s is the number of shortened information bits. The
code B defines the constraints that have to be satisfied by all CNs in the Tanner graph
representing the SC-GLDPC code.
For completeness, we review the construction of the terminated case described in [13,

Def. 2] and explain the necessary modifications for the tailbiting case. Assume that
mc CNs with degree nB are placed at each of the spatial positions 1 to T + w − 1 and
mcnB/2 VNs of degree 2 are placed at each of the spatial positions 1 to T . Additionally,
mcnB/2 VNs initialized to a known value are placed at positions j < 1 and j > T

to terminate the code. The connections between CNs and VNs are as follows. The
mcnB VN and CN sockets at each position are partitioned into w groups of equal size
mcnB/w via a uniform random permutation. The i-th group at the j-th VN position
and the i-th group at the j-th CN position are denoted by S(v)j,i and S(c)j,i , respectively,
where i ∈ {0, 1, . . . , w − 1}. The Tanner graph of one particular code in the ensemble is
constructed by using a uniform random permutation to connect S(v)j,i to S(c)j+i,w−i−1 and
mapping the mcnB/w edges between the two groups. For the tailbiting case, the position
index j + i is interpreted modulo T and no known VNs are present.
Example 3. Consider the case where T = 5 and w = 2. The Tanner graph of a code in
the terminated ensemble is shown in Fig. 6. The blocks π spread out the edges from the
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Figure 6: Tanner graph for a code in the terminated SC-GLDPC ensemble with T = 5 and
w = 2. Known VNs are shown in red.

VNs and CNs according to the random permutations in the construction. A code from
the tailbiting ensemble is obtained by removing the known VNs and the CNs at position
6, and connecting the lose edges to the CNs at position 1. 4
The design rate for the terminated ensemble is lower bounded by [31, eq. (2.2)]

R′(T ) ≥ R′ − (1−R′)w − 1
T

, (B.1)

where R′ = 2kB/nB−1 is the design rate for the tailbiting ensemble. An exact expression
for the design rate can be obtained by explicitly considering the possibility that certain
CNs are connected exclusively to known VNs, similar to [8, Lemma 3]. However, for
the high CN degrees and small coupling factors considered in this paper, one can safely
ignore this possibility and we henceforth interpret (B.1) as an equality.

Example 4. Let B be a shortened BCH code with ν = 7, t = 3, and s = 43, i.e., B has
rate 0.75. For the terminated and tailbiting ensembles in Example 3, the design rates
are given by R′(T ) = 0.4 and R′ = 0.5, respectively. 4

Similar to the parity-check matrix of an LDPC code, a GLDPC code can be specified
by an incidence matrix [22, p. 220]. The dimensions of the incidence matrix are mc(T +
w − 1) × TmcnB/2 and mcT × TmcnB/2 for the terminated and tailbiting ensembles,
respectively.

Example 5. Consider the case where w = 2 and T =∞. Let nB be even and mc = nB/2.
If the edge permutations are such that the semi-infinite incidence matrix is the one shown
in [32, p. 54], the code corresponds to a staircase code. In other words, staircase codes
are contained in the terminated ensemble for a certain choice of parameters w, T , and
mc. 4
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4.2 Hard-Decision Decoding and Density Evolution
We use the iterative HDD algorithm based on extrinsic message passing of binary mes-
sages that is proposed in [13, Sec. II-A] (see also [18, Sec. II-C]). Assume transmission
over a BSC with crossover probability p. All outgoing VN messages are initialized to the
channel observation. For each CN, the incoming messages from the VNs are collected
in a candidate decoding vector, which is then decoded using BDD. The outgoing CN
messages are computed based on the Hamming distance between the candidate vector
and the decoded vector, cf. [18, Algorithm 1]. In the next iteration, the outgoing VN
message on a particular edge corresponds to the incoming message on the other edge of
that VN. Decoding continues for lmax iterations. The final decision for each VN is made
based on the channel observation and the two incoming messages. If the two messages
agree, the bit is set to the message value. If the messages disagree, the bit is set to the
binary complement of the channel observation. As pointed out in [13], extrinsic message
passing is different compared to the conventional approach of decoding product-like codes
(referred to as intrinsic message passing in [13]) and can be rigorously analyzed via DE
even in the event of miscorrection [13], i.e., when undetected errors remain after BDD.
We briefly summarize the DE analysis presented in [13]. Assume that the all-zero

codeword is transmitted and let q(l)
j be the average probability that a message emitted

by a VN at position j is in error (i.e., the message is “1”) after the lth iteration. The
DE recursion is given by [13, eq. (5)]

q
(l)
j = 1

w

w−1∑
k=0

fnB

(
1
w

w−1∑
k′=0

q
(l−1)
j−k′+k; p

)
, (B.2)

with [13, eq. (2)]

fnB(x; p) ,
nB−1∑
i=0

(
nB − 1
i

)
xi(1− x)nB−1−i

· (pPnB(i) + (1− p)QnB(i)) ,
(B.3)

where PnB(i) andQnB(i) are defined in [13, eq. (3)] and [13, eq. (4)]. The initial conditions
are q(0)

j = p for j ∈ {1, . . . , T} and q(l)
j = 0 for j /∈ {1, . . . , T}. For tailbiting ensembles,

the subscript j − k′ + k in (B.2) is calculated modulo T .
The analysis in [13] is presented for unshortened BCH codes, i.e., s = 0. However,

CNs connected to known variable nodes are treated as shortened component codes by
adjusting the effective error probability of the incoming messages through the boundary
condition q(l)

j = 0 for j /∈ {1, . . . , T}. If the component codes are shortened BCH codes,
one can therefore apply the same analysis as before, where nB now denotes the length of
the unshortened code and the function fnB(x; p) is replaced by fnB(x(nB − s)/nB; p).

The BER for the VNs at position j after the lth iteration was not derived in [13], but
can be easily found as follows. First, we rewrite (B.3) in the form

fnB(x; p) = pf1→1
nB (x) + (1− p)f0→1

nB (x) , (B.4)
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where f1→1
nB (x) and f0→1

nB (x) are implicitly defined via (B.3). We introduce the two
variables

a
(l)
j , f

1→1
nB

(
1
w

w−1∑
k′=0

q
(l)
j−k′

)
, b

(l)
j , f

0→1
nB

(
1
w

w−1∑
k′=0

q
(l)
j−k′

)
(B.5)

and their averages

ā
(l)
j ,

1
w

w−1∑
k=0

a
(l)
j+k and b̄

(l)
j ,

1
w

w−1∑
k=0

b
(l)
j+k. (B.6)

With these definitions, the recursion (B.2) becomes

q
(l)
j = pā

(l−1)
j + (1− p)b̄(l−1)

j (B.7)

and the decoding error probability after the lth iteration is

p
(l)
e,j = p

(
ā

(l−1)
j

)2
+ (1− p)

(
1−

(
1− b̄(l−1)

j

)2
)
. (B.8)

The final BER after lmax steps of iterative HDD is computed as pe = 1
T

∑T
j=1 p

(lmax)
e,j .

Since we intend to use the DE analysis in an optimization routine, we approximate
the two functions f1→1

nB (x) and f0→1
nB (x) with their high-rate scaling limit versions (i.e.,

for nB →∞) which are easier to compute and given by [13]

f1→1
nB (x) ≈ φ (nBx; t− 1) (B.9)

and

f0→1
nB (x) ≈ 1

nB(t− 1)!φ (nBx; t) , (B.10)

where φ (λ; t) = 1−∑t
i=0

λi

i! e
−λ.

It is straightforward to modify the decoding algorithm and the DE analysis if a similar
WD as for the protograph-based SC-LDPC codes is used and hence we omit the details.
Example 6. Consider the case where T = 20 and w = 2. Let B be the same BCH
code as in Example 3. The design rates are R′(T ) = 0.475 and R′ = 0.5, respectively.
Assume transmission using PM-QPSK in the linear regime and a WD with W = 5 and
lmax = 10. In Fig. 5(b), we show the predicted BER obtained via DE (solid lines)
together with the actual performance of randomly generated codes (dashed lines) for
mc = 200 (crosses) and mc = 1500 (dots) for both the terminated (blue) and tailbiting
(red) cases. The decoding thresholds at a BER of 10−5 are ρ∗ ≈ 3.71 dB and ρ∗ ≈ 3.94
dB, respectively. 4
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5 Bit Mapper Optimization
The different modulation bits of a nonbinary signal constellation have different protection
levels, which can be taken advantage of by optimizing the bit mapper. This concept is
easiest to understand for HDD, which we describe first.
For the “hard” demodulator, the entire block diagram shown in Fig. 1 can be replaced

by m parallel BSCs with different crossover probabilities pi, 1 ≤ i ≤ m, which depend on
the signal constellation, binary labeling, and SNR ρ. Each VN corresponds to a coded bit,
and for the SC-GLDPC codes there are mcnB/2 VNs at each spatial position (see Section
4.1). The baseline bit mapper (see Section 2) allocates the same number of coded bits
from each spatial position to the different modulation bits (i.e., the m parallel BSCs). In
this case, the crossover probability for the VNs at an arbitrary spatial position is simply
the average p̄ = 1

m

∑m
i=1 pi. More generally, the bit mapper is modeled by specifying the

assignment of VNs to the modulation bits via a matrix A = [ai,j ] ∈ Rm×T , where ai,j ,
0 ≤ ai,j ≤ 1 ∀i, j, denotes the proportional allocation of the coded bits corresponding to
the VNs at spatial position j allocated to the ith modulation bit, and

∑m
i=1 ai,j = 1, for

all j. The effective crossover probability for the VNs at spatial position j is therefore a
weighted average of the BSC crossover probabilities according to εj =

∑m
i=1 ai,jpi. To

account for different crossover probabilities at the spatial positions in the DE analysis,
we can simply replace p in (B.2) by εj .
For the protograph-based SC-LDPC codes with SDD, one can make similar consider-

ations. Each VN in the protograph represents M VNs in the lifted Tanner graph, i.e.,
M coded bits. If we assume for example that a given protograph is lifted with a lifting
factor M which is divisible by m, the baseline bit mapper allocates M/m coded bits for
each protograph VN to each modulation bit. The bit mapper is modeled via a matrix
A = [ai,j ] ∈ Rm×n′C , where ai,j now denotes the proportional allocation of the coded
bits corresponding to the jth column in the base matrix allocated to the ith modulation
bit. The matrix A is then used in the modified P-EXIT analysis to predict the iterative
performance behavior under SDD [16, Algorithm 1].
We optimize A based on the decoding threshold with the help of differential evolution

[33]. For more details about the optimization procedure, we refer the reader to [16],
where we also discuss several techniques to reduce the optimization complexity for SC
codes. Once an optimized bit mapping matrix A∗ is found, the finite-length bit mapper
is obtained via the rounded matrix (mcnB/2)A∗ for the SC-GLDPC codes and viaMA∗
for the SC-LDPC codes, from which the index assignment of coded bits to modulation
bits is determined.

6 Results and Discussion
Since this paper does not deal with code design, we rely on code parameters that have
been proposed elsewhere in the literature in order to illustrate the bit mapper optimiza-
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Figure 7: Optimized allocation to the modulation bits with the best (green), worst (red), and
intermediate (yellow, for PM-64-QAM) protection level for each spatial position of
the tailbiting code in two scenarios.

tion technique. For the numerical results, we consider protograph-based SC-LDPC codes
with P0 = (1, 2, 1, 2) and P1 = (3, 2, 3, 2), where J ′ = 1, K ′ = 4, and ms = 1 [34]. The
design rate of the tailbiting case is R = 0.75 (OH = 33%). For the SC-GLDPC codes, we
restrict ourselves to w = 2 and use the BCH code parameters in [35, Table I] which are
optimized for staircase codes. In particular, we consider ν = 9, t = 4, and s = 223, which
again leads to R′ = 0.75. The staircase code for these parameters is estimated to perform
approximately 1.38 dB away from the BSC capacity (at a BER of 10−15) [35, Table I].
We also consider an example with higher rate and performance closer to capacity. In
particular, we consider ν = 10, t = 4, s = 143 where R′ = 0.91 (OH = 10%). The gap to
capacity of the staircase code for these parameters is estimated to be 0.59 dB [35, Table
I].

The bit mapper optimization is performed for the terminated and tailbiting cases of the
three code examples for different spatial lengths T ∈ {12, 21, 30, 39, 48, 57, 66, 75, 84, 300}.
We consider Gray-labeled PM-16-QAM, PM-64-QAM, and PM-256-QAM. In all scenar-
ios, a WD is employed with a window size ofW = 5 and lmax = 10 iterations per window.
The target BER for the optimization is set to 10−5. Setting a lower target BER (e.g.,
10−15) has virtually no influence on the optimization outcome due to the steepness of
the predicted DE performance curves (see Fig. 5). This assumes that there are no error
floors due to harmful graph structures, which cannot be modeled using DE and are not
considered in this paper. An analysis of the error floor for the considered SC-GLDPC
codes is an interesting topic for future work and beyond the scope of this paper.

6.1 Structure of the Optimized Bit Mapper for Tailbiting Codes
For the tailbiting codes, the optimized bit mappers have an interesting structure, which
is illustrated in Fig. 7 for two scenarios: (a) the SC-LDPC code with SDD, PM-64-QAM,
and T = 30; (b) the SC-GLDPC code with HDD, R′ = 0.75, PM-16-QAM, and T = 30.
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For PM-64-QAM and PM-16-QAM, the modulation bits have three and two different
protection levels, respectively. Due to the tailbiting code structure, the bit allocation is
invariant to a circular shift, assuming that the scheduling of the WD is modified according
to the same shift. For the allocation shown in Fig. 7, it is assumed that the first decoding
window begins at the first spatial position. The optimized bit mapper in both scenarios
deviates significantly from the baseline mapper in the first few spatial positions. For the
SC-LDPC code, the coded bits corresponding to the second, third, and fourth spatial
position are proportionally more allocated to the best (green) and intermediate (yellow)
protection level of PM-64-QAM. Similarly, for the SC-GLDPC code, the coded bits
corresponding to the second and third spatial position are proportionally more allocated
to the best modulation bit of PM-16-QAM. In both cases, the optimized allocation leads
to a locally improved decoding convergence and initiates a wave-like decoding behavior
comparable to that of terminated codes, i.e., the unequal error protection of the signal
constellation is exploited to create an artificial termination boundary.
The performance gain due to the optimized bit mapper (which is quantified in the next

section) comes at the expense of some increase in system complexity. In particular, one
has to account for additional buffering because a symbol cannot be transmitted until all
its m bits are encoded. For simplicity, let us assume a model where the FEC encoder
outputs coded bits in blocks of MK ′ or mcnB/2 bits, i.e., the number of bits per spatial
position, and symbols are immediately modulated as soon as all m modulation bits are
available. Then, no buffering is required for the sequential baseline mapper. On the
other hand, the “worst-case” bit mapper allocates 100% of the coded bits in the first
T/m spatial positions to the first modulation bit, 100% in the next T/m positions to
the second bit, and so on (i.e., ai,j = 1 for (i− 1)T/m+ 1 ≤ j ≤ iT/m). Consequently,
no bits are allocated to the last modulation bit until spatial position (m − 1)T/m + 1
and buffering of all coded bits up to position (m− 1)T/m is required. In all considered
scenarios, however, the required additional buffer size (in terms of the number of spatial
positions) due to the optimized bit mappers did not exceed 2.

6.2 Optimization Gain
In Fig. 8, we show the optimization gain (in dB) as a function of the spatial length T for
all considered scenarios. The optimization gain is defined as the difference between the
decoding threshold using the baseline bit mapper and the decoding threshold using the
optimized bit mapper. The gain quantifies the performance improvement one can expect
by employing the optimized bit mappers assuming long codes.
Regardless of the signal constellation or code class, the optimization gain decreases

with T for the terminated codes and increases for the tailbiting codes. This behavior
can be explained as follows. The optimization gain for the tailbiting codes comes from
allocating more coded bits in the beginning of the spatial chain to good modulation bits
in order to initiate a decoding wave. This, however, reduces the effective capacity for
the bits in the middle part of the spatial chain. As T increases, this reduction becomes
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Figure 8: Optimization gain as a function of the spatial length T .

negligible and the optimization gain tends to a constant value. For terminated codes, a
decoding wave is initiated by default and the optimized bit mapper increases the effective
capacity for the bits in the middle part by allocating bits in the beginning and end of
the chain proportionally more to modulation bits with lower protection levels. Again,
as T increases, this effect becomes negligible and the gain approaches zero. As a result,
while the tailbiting codes significantly benefit from the optimization, the gain for the
considered terminated codes is limited, i.e., for T ≥ 30 the gain is < 0.1 dB in all cases.
It can also be observed that the optimization gain generally depends on the signal

constellation. The gain increases with the modulation order M due to the increased
number of protection levels and stronger unequal error protection. This gain increase can
also be observed when optimizing bit mappers for irregular LDPC codes, see, e.g., [36].
It is also important to stress that the optimization relies on the availability of a signal
constellation with different protection levels in order to provide a performance gain. In
particular, the techniques do not apply to PM-BPSK or (Gray-labeled) PM-QPSK.
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Figure 9: Capacity gap as a function of the spatial length T for PM-64-QAM.

6.3 Gap to Capacity
In order to gain some insight into the performance of the terminated and tailbiting codes
relative to each other, the capacity gap (in dB) as a function of the spatial length T is
shown in Fig. 9 for PM-64-QAM. For SDD of the SC-LDPC codes, the BICM capacity [5]
is taken as a benchmark. For HDD of the GLDPC codes, the capacity of the BSC with
averaged crossover probability is taken as a benchmark, similar to [37]. Alternatively,
one may use the capacity of the sum of the m parallel BSCs as a benchmark, which is
larger. The gains discussed in the previous subsection are indicated in Fig. 9 with arrows.
The decoding thresholds for the baseline systems are approximately independent of T .

Therefore, the capacity gap for the tailbiting codes remains constant in all cases, while
the capacity gap for the terminated codes decreases due to the vanishing rate loss. For the
baseline systems, the performance difference between terminated and tailbiting codes is
most significant for the SC-LDPC codes (up to 0.75 dB), while for the SC-GLDPC codes
the difference is lower (up to 0.25 dB for R′ = 0.75 and up to 0.19 dB for R′ = 0.91).
In all cases, the capacity gap is reduced by employing the optimized bit mappers. If we
compare the optimized systems, it can be seen that the gap for the SC-LDPC codes is
virtually identical for terminated and tailbiting cases. For the SC-GLDPC codes, the
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Figure 10: Simulation results for the SC-LDPC code with PM-64-QAM over the AWGN chan-
nel. The codes have length 360 000.

tailbiting codes perform closer to capacity, albeit the difference to the terminated codes
for T ≥ 30 is small. For very long spatial lengths (i.e., T = 300), the capacity gap
virtually overlaps also for the SC-GLDPC codes.

6.4 Simulation Results
The results presented in the previous two subsections are based on decoding thresholds,
i.e., assume an infinite code length. The deviation of the DE analysis from the finite-
length performance is determined by the lifting factor M and the number of CNs per
position mc, see Fig. 5.

As an example, consider the SC-LDPC code with T = 30 and M = 3000 leading to a
code length of nC = 360 000. The rates are R(30) ≈ 0.742 and R = 0.75, respectively.
In Fig. 10, we show simulation results (dashed lines with dots) and the analytical P-
EXIT prediction (solid lines) for the AWGN channel, i.e., a linear transmission scenario,
assuming PM-64-QAM. As predicted by the optimization gain in Fig. 8(a), the tailbiting
code performs significantly better with an optimized bit mapper and a gain of ≈ 0.55
dB is achieved at a BER of 10−5. The terminated code performs better for the same
SNR, but entails a smaller spectral efficiency due to the rate loss. The gap to the BER-
constrained BICM capacity [22, p. 17] of the two optimized systems, as indicated by the
arrows and predicted from Fig. 9(a), is approximately the same (as is the gap to the
AWGN channel capacity, not shown).

Lastly, we also present simulation results for a nonlinear transmission scenario. We
set α = 0.25 dB/km, β2 = −21.668 ps2/km, γ = 1.4 W−1 km−1, νs = 1.934 × 1014

Hz, nsp = 1.622, Rs = 40 GBaud, and Lsp = 70 km. A root-raised cosine pulse p(t)
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Figure 11: Simulation results for the SC-LDPC with PM-64-QAM over a dispersion uncom-
pensated transmission link.

with a roll-off factor of 0.25 is used. We employ the symmetric split-step Fourier method
with two samples per symbol and a fixed step size [38, Sec. 2.4.1]. The input power per
polarization is set to P = −2.5 dBm. In the simulation model, the polarization state
is assumed to be known and perfect timing and carrier synchronization is assumed. In
Fig. 11, the simulated BER of the PM transmission systems is plotted as a function of
the number of fiber spans Nsp. For the tailbiting code, the 0.55 dB gain obtained by
using the optimized bit mapper translates into an increase of the transmission reach by
roughly 3 additional spans or approximately 13%. This gain is obtained at almost no
increased system complexity cost, i.e., by simply replacing the baseline bit mapper with
an optimized one. This reach extension can also be approximately calculated using the
analytical expression for the SNR ρ as a function of the number of spans presented in [24].
The terminated code enables a longer transmission reach of approximately one span, at
the expense of a 1.2% decrease in spectral efficiency. The performance of the terminated
code with the baseline bit mapper is very close to the performance of the tailbiting code
with the optimized bit mapper and is therefore not shown in Figs. 10 and 11 for clarity.

7 Conclusions
In this paper, we considered the optimized allocation of the coded bits from the FEC
encoder to the modulation bits for terminated and tailbiting SC FEC schemes, assuming
both SDD and HDD, as well as different signal constellations. Terminated SC codes
generally benefit little from the optimization, particularly for long spatial lengths. How-
ever, the performance of tailbiting SC-LDPC codes can be significantly improved. With
an optimized bit allocation, the terminated and tailbiting codes are competitive, in the
sense that spectral efficiency can be traded for transmission reach, at approximately the
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1 Introduction

Abstract

We discuss the optimization of staircase code parameters based on den-
sity evolution. An extension of the original code construction is pro-
posed, leading to codes with steeper waterfall performance.

1 Introduction
In [1], Smith et al. proposed a new class of forward error correction (FEC) codes for
optical transport networks, named staircase codes, which offer a 0.42 dB net coding gain
(NCG) improvement over the best code from the ITU-T G.975.1 recommendation, while
at the same time maintaining a low implementation complexity [1]. Staircase codes are a
class of generalized low-density parity-check (GLDPC) codes where all variable nodes in
the underlying Tanner graph have degree two and the check nodes correspond to Bose–
Chaudhuri–Hocquenghem (BCH) codes. The code construction described in [1, Sec. IV]
is specified in terms of the BCH code parameters (ν, t, s), where ν is the Galois field ex-
tension degree, t the error-correction capability, and s the shortening parameter. In [2],
these parameters were optimized assuming FEC overheads (OHs) ranging from 6.25% to
33.33%. Given a predefined parameter space, the optimization is based on a brute-force
search using extensive software simulations to predict the code performance. Further-
more, in order to reduce the optimization complexity, a simplified iterative hard-decision
decoding (HDD) is assumed. This iterative HDD does not account for miscorrections in
the bounded-distance decoding of the BCH codes.

In this paper, we discuss a different approach to finding good staircase code parameters
for a fixed OH. We observe that, for a certain choice of parameters, staircase codes are
contained in the spatially-coupled GLDPC (SC-GLDPC) code ensemble proposed in [3],
whose asymptotic behavior can be analyzed using density evolution (DE). In particular,
we use decoding thresholds (which are defined further below) as the optimization crite-
rion. This approach offers a significantly reduced optimization time (or the possibility
to explore a larger parameter space) and can rigorously account for miscorrections. The
latter is obviously also possible with simulations, i.e., by performing bounded-distance
decoding of the BCH codes, albeit at the cost of an increased optimization time.

A staircase code with parameters optimized with the above approach does not guar-
antee to provide the best performance for a given pre-FEC bit error rate (BER). This
is because the performance of staircase codes is not necessarily well predicted by the
asymptotic DE in [3], in particular for small staircase block sizes. To overcome this
problem, we propose an extension of staircase codes with larger staircase block sizes by
allowing for multiple code constraints per row/column in the staircase array. It is shown
that the proposed codes have steeper waterfall performance curves compared to those
obtained from the original construction and match the DE prediction more closely.
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2 Staircase Codes
Let C be a shortened primitive BCH code with (even) length n = 2ν−1−s and dimension
k = 2ν − νt − 1 − s. A staircase code with rate R = 2k/n − 1 (and OH = 1/R − 1)
is defined as the set of all matrix sequences Bi ∈ {0, 1}a×a, i = 0, 1, 2, . . ., such that
the rows in [BT

i−1 Bi] for all i ≥ 1 form valid codewords of C, where a = n/2 and B0
is initialized to the all-zero matrix. Similar to classical product codes, codewords in a
staircase code are naturally represented as two-dimensional arrays and a is the size of
one block in the characteristic staircase array shown in [1, Fig. 4].
Motivated by the work on block-wise braided block codes [4], a SC-GLDPC code

ensemble was proposed in [3]. This code ensemble is specified in terms of the parameters
(C,m,L,w), where m is the number of constraint nodes per spatial position, L the total
number of spatial positions, and w the coupling width. Staircase codes are closely related
to block-wise braided block codes [5] and both code classes can be seen as particular codes
in the ensemble described in [3, Def. 2] with a proper interleaver choice. In particular,
it can be shown that the staircase code for a given C is contained in the ensemble for
m = n/2, L→∞, and w = 2.

2.1 Iterative Hard-Decision Decoding
The decoding of staircase codes described in [1, Sec. IV-A] is performed in a sliding-
window fashion by iterating between the BCH decoders for all rows and columns in the
staircase array consisting of W received blocks for a maximum of l iterations. This
decoding scheme can be seen as an iterative message-passing algorithm with “hard” (i.e.,
binary) messages in the Tanner graph describing the code. However, it is pointed out
in [3] that the message-passing rule associated with the decoding algorithm in [1] violates
the principle that only extrinsic messages should be exchanged during iterative decoding.
Hence, the authors in [3] refer to this decoding as iterative HDD with intrinsic message
passing (IMP). In this paper, we employ the iterative HDD with extrinsic message passing
(EMP) proposed in [3], and adapted to operate in a sliding-window fashion for staircase
codes. EMP can provide better performance compared to IMP [5], and its performance
can be analyzed using DE, even in the event of miscorrection [3]. For more details about
this algorithm and the differences with respect to the decoding in [1], we refer the reader
to [3] and [5, Algorithm 1].

2.2 Density Evolution
DE is a tool to predict the iterative decoding performance of asymptotically long codes
in the waterfall region. DE mimics the decoding process under a cycle-free graph as-
sumption by tracking how the probability densities of the exchanged messages evolve
with iterations. In [3], a DE analysis is presented for the (C,m,L,w) SC-GLDPC code
ensemble with iterative HDD and EMP, assuming that m→∞.
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Figure 1: DE (solid) and simulation (dashed) results

Example: Let C1 be a BCH code with parameters (ν, t, s) = (9, 5, 151) [2, Table II]. For
the (C1,∞, 30, 2) SC-GLDPC code ensemble, if we adapt the DE analysis in [3, eq. (9)]
to a sliding-window decoder with W = 7 and l = 8, one obtains the solid blue curve in
Fig. 1. The simulated performance (assuming a binary symmetric channel (BSC)) of the
staircase code with C1 (which leads to a block size of a = 180 and OH = 33.33%) using
EMP is shown in Fig. 1 by the dashed blue curve with dots. The performance using IMP
is shown by the dashed blue curve with stars, where the data is taken from [2, Fig. 2]. 4
It can be observed that DE accurately predicts the pre-FEC BER region where the

staircase code performance curve “bends” into the characteristic waterfall behavior. This
motivates the use of DE to find good staircase code parameters. In particular, we use
the decoding threshold (for a finite number of decoding iterations), which is defined as
the pre-FEC BER value where the DE curve crosses a certain target post-FEC BER.
Decoding thresholds can be computed numerically using a bisection search over a given
pre-FEC BER range. The decoding threshold for the code ensemble in Example 1 at a
post-FEC BER of 10−7 is approximately given by 2.54 · 10−2 and also indicated in Fig. 1.
It can also be observed that the actual performance of the staircase code deviates

quite significantly from the DE prediction once the pre-FEC BER is smaller than the
decoding threshold. In this context, it is important to point out that the DE analysis
applies to the SC-GLDPC ensemble for m → ∞, whereas staircase codes belong to the
ensemble where m is fixed to half the length of the BCH code. For a random code taken
from the ensemble, the parameter m determines the steepness of the BER curve. Similar
observations can be made also for staircase codes, where the steepness of the BER curves
in the waterfall region is determined by the block size a, see [2, Fig. 2].
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Figure 2: Modified staircase array

3 Extended Staircase Codes
By allowing for q > 1 code constraints in each row and column of the staircase array,
one can increase the block size of staircase codes to ã = qa. In order to indicate which
bit participates in the j-th code constraint of a particular row or column, one may use
q masking matrices Mj ∈ {0, 1}ã×ã, j ∈ {1, 2 . . . , q}, with a ones in each row such
that

∑q
j=1 Mj is the all-one matrix. We informally write A ∩Mj to denote the ã × a

matrix containing the elements from the ã× ã matrix A where the corresponding entry
in Mj is equal to one. The extended staircase code with larger block size is defined
as the set of all matrix sequences Bi ∈ {0, 1}ã×ã, i = 0, 1, 2, . . ., such that the rows in
[BT

i−1 ∩Mj Bi ∩Mj ] for all i > 0 and j form valid codewords in C, where B0 is the
all-zero matrix. As an example, the staircase array for n = 4 and q = 2 is shown in
Fig. 2. We remark that this extension is itself a special case of a more general technique,
where the Tanner graph of the staircase code can be interpreted as a protograph which
is lifted in order to obtain a larger graph [6]. Our particular choice for the lifting factor
(i.e., q2) and type of lifting preserves many properties of the original staircase codes, e.g.,
the staircase array structure and time-invariant encoding/decoding operations.

4 Results and Discussion
We consider the same parameter space as in [2], i.e., the product set of OH ∈ {1/i : i =
3, 4, . . . , 16}, ν ∈ {8, 9, 10, 11, 12}, and t ∈ {2, 3, 4, 5, 6}. In Table 1, we list the parameters
that give the best decoding threshold at a BER of 10−15 for the SC-GLDPC ensemble
with L = 30 and w = 2 according to the DE analysis accounting for miscorrection [3,
eq. (9)] and adapted to a sliding-window decoder withW = 7 and l = 8. We also show the
NCG at a BER of 10−15 using the obtained decoding thresholds and the corresponding
gap to the maximum NCG for the BSC. To allow for a direct comparison, we repeat
the values that are reported in [2], where results for OH = 8.33% are unfortunately
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not available. We would like to stress that in [2], software simulations are extrapolated
down to 10−15 to estimate the NCG and gap. Hence, those values are not directly
comparable to the ones we obtain by using decoding thresholds. Rather, the threshold
results should be seen as a way to identify further room for improvement, in particular
using the extended staircase code construction. As an example, for OH = 33.33%, we
simulated the staircase code based on the BCH code C2 with (ν, t, s) = (8, 3, 63) together
with the extended staircase code for q = 2. The results are shown in Fig. 1 by the
dashed red lines with dots and circles, respectively. The extended staircase code has a
steeper waterfall performance at the expense of a larger block size of ã = 192. The block
size is, however, comparable to that of the staircase code with C1 and, extrapolating the
simulation results to 10−15, we expect a gain of approximately 0.11 dB. If larger block
sizes can be tolerated, further improvements (up to around 0.33 dB) can be expected by
increasing q.

5 Conclusions
We have shown that the DE analysis in [3] can be used as an effective tool for find-
ing good staircase code parameters. Compared to the simulation-based method in [2],
this approach is less complex (e.g., the parameter space in [2] can be searched within
seconds) and can account for miscorrections assuming iterative HDD with EMP. An ex-
tended staircase code construction was proposed with steeper waterfall performance at
the expense of a larger staircase block size.
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1 Introduction

Abstract

Generalized product codes (GPCs) are extensions of product codes
(PCs) where code symbols are protected by two component codes but
not necessarily arranged in a rectangular array. We consider a deter-
ministic construction of GPCs (as opposed to randomized code ensem-
bles) and analyze the asymptotic performance over the binary erasure
channel under iterative decoding. Our code construction encompasses
several classes of GPCs previously proposed in the literature, such as
irregular PCs, block-wise braided codes, and staircase codes. It is as-
sumed that the component codes can correct a fixed number of erasures
and that the length of each component code tends to infinity. We show
that this setup is equivalent to studying the behavior of a peeling al-
gorithm applied to a sparse inhomogeneous random graph. Using a
convergence result for these graphs, we derive the density evolution
equations that characterize the asymptotic decoding performance. As
an application, we discuss the design of irregular GPCs employing a
mixture of component codes with different erasure-correcting capabili-
ties.

1 Introduction
Many code constructions are based on the idea of building longer codes from shorter
ones [1–3]. In particular, product codes (PCs), originally introduced by Elias in 1954 [4],
are constructed from two linear component codes, C1 and C2, with respective lengths n1
and n2. The codewords in a PC are rectangular n1 × n2 arrays such that every row is
a codeword in C1 and every column is a codeword in C2. In 1981, Tanner significantly
extended this construction and introduced generalized low-density parity-check (GLDPC)
codes [5]. GLDPC codes are defined via bipartite graphs where variable nodes (VNs)
and constraint nodes (CNs) represent code symbols and component code constraints,
respectively. If the underlying graph of a GLDPC code consists exclusively of degree-2
VNs (i.e., each code symbol is protected by two component codes), the code is referred to
as a generalized PC (GPC). Most of the examples presented in [5] fall into this category.

PCs have an intuitive iterative decoding algorithm and are used in a variety of applica-
tions [6,7]. In practice, the component codes are typically Bose–Chaudhuri–Hocquenghem
(BCH) or Reed–Solomon codes, which can be efficiently decoded via algebraic bounded-
distance decoding (BDD). This makes GPCs particularly suited for high-speed applica-
tions due to their significantly reduced decoding complexity compared to message-passing
decoding of low-density parity-check (LDPC) codes [8]. For example, GPCs have been
investigated by many authors as practical solutions for forward-error correction in fiber-
optical communication systems [8–15].
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The iterative decoding of GPCs is a standard element in many of these systems and the
analysis of iterative decoding is typically based on density evolution (DE) [16, 17] using
an ensemble argument. That is, rather than analyzing a particular code directly, one
considers a set of codes, defined via suitable randomized connections between VNs and
CNs in the Tanner graph. Some notable exceptions include Gallager’s original analysis
based on deterministic constructions of large-girth LDPC codes [18], Tanner’s analysis
of Hamming GPCs [5], the analysis of PCs using monotone graph properties [19], and
the analysis of PCs based on the k-core problem [9,11].
In this paper, we focus on the asymptotic performance of GPCs over the binary erasure

channel (BEC) assuming iterative decoding based on BDD of the component codes.
In particular, we consider the case where the component codes have a fixed erasure-
correcting capability and the length of each component code tends to infinity. Like [9,
11,19], we consider a deterministic construction of GPCs. Indeed, many classes of GPCs
have a very regular structure in terms of their Tanner graph and are not at all random-
like. The code construction we consider is sufficiently general to recover several of these
classes as special cases, such as irregular PCs [20, 21], block-wise braided codes [22,
Sec. III], and staircase codes [8]. The main contribution of this paper is to show that,
analogous to DE for code ensembles, the asymptotic performance of the considered GPC
construction is rigorously characterized by a recursive update equation.
Like [9,11,19], this paper is largely based on results that have been derived in random

graph theory. In our case, the Tanner graph itself is deterministic and consists of a fixed
arrangement of (degree-2) VNs and CNs. Randomness is introduced entirely due to the
channel by forming the so-called residual graph (or error graph) from the Tanner graph,
i.e., after removing known VNs and collapsing erased VNs into edges [9, 11, 19]. Thus,
different channel realizations give rise to an ensemble of residual graphs, facilitating the
analysis. The code construction considered here is such that the residual graph ensemble
corresponds to the sparse inhomogeneous random graph model in [23]. Analyzing the
decoding failure of the iterative decoder (for a fixed number of iterations) can then
be translated into a graph-theoretic question about the behavior of a peeling algorithm
applied to such a random graph. We can then use a convergence result in [23] to conclude
that, as the number of vertices in the graph tends to infinity, the correct limiting behavior
is obtained by evaluating the peeling algorithm on a multi-type branching process.
A similar connection between large random graphs and branching processes also arises

in the DE analysis for code ensembles, e.g., irregular LDPC codes. The main difference
between this and our setup is that, for code ensembles, the Tanner graph itself is random
due to the randomized edge connections in the ensemble definition. DE relies on the
fact that the asymptotic behavior of an extrinsic iterative message-passing decoder can
be analyzed by considering an ensemble of computation trees [24, Sec. 3.7.2] (see also
[25, Sec. 1]). This tree ensemble can alternatively be viewed as a multi-type branching
process, where types correspond to VNs and CNs of different degrees. A tree-convergence
and concentration result ensures that the performance of a code taken (uniformly at
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random) from the ensemble will be close to the predicted DE behavior, provided that
the code is sufficiently long [17, Th. 2].

The above ensemble approach can be applied to GLDPC codes and thus also to GPCs.
For example, in [26], [27], [28] a DE analysis for protograph-based braided codes is
presented, where the Tanner graph of a tightly-braided code is interpreted as a protograph
[29]. An ensemble approach has been further applied to regular GPCs in [30], where
the authors analyze the asymptotic ensemble performance and derive the corresponding
iterative decoding thresholds. In [31–33], the authors perform a DE analysis for GPC
ensembles paying special attention to so-called spatially-coupled codes. However, given
the fairly regular Tanner graph structure of several GPC classes, it would be highly
desirable to make precise statements about the performance of actual codes, without
resorting to an ensemble argument.

The work here is closely related to [9,11,19]. In [19], combinatorial tools from the study
of random graphs are used to analyze the iterative decoding of PCs. In [9], the authors
point out the direct connection between the iterative decoding of PCs and a well-studied
problem in random graph theory: the emergence of a k–core, defined as the largest
induced subgraph where all vertices have degree at least k [34]. Indeed, assuming that
all component codes can correct t erasures and allowing for an unrestricted number of
iterations, the decoding either finishes successfully, or gets stuck and the resulting graph
corresponds to the (t + 1)–core of the residual graph. The results in [34] apply to PCs
only after some modifications (described in [9]), since the random graph model in [34]
is slightly different than the actual one corresponding to the residual graph ensemble of
PCs. In a later paper, Justesen considered GPCs for which the Tanner graph is based on
a complete graph [11] (see, e.g., Fig. 1(b)). In that case, the results in [34] are directly
applicable. The resulting codes are referred to as half-product codes (HPCs). Even
though these codes have received very little attention in the literature, Tanner already
used a similar construction [5, Fig. 6].

We use HPCs as the starting point for our analysis. The reason is that the residual
graph of an HPC corresponds exactly to an instance of the Erdős–Rényi random graph
model G(n, p) [35, 36], which is arguably one of the most well-studied random graph
models and also considerably simpler than the inhomogeneous random graph model in
[23]. It is therefore instructive to consider this case in sufficient detail before analyzing
generalizations to other GPCs. Even though other classes of GPCs are mentioned and
discussed also in [11] (e.g., braided codes), so far, rigorous analytical results about the
asymptotic performance of deterministic GPCs have been limited to conventional PCs
and HPCs.

As an application of the derived DE equations for deterministic GPCs, we discuss the
optimization of component code mixtures for HPCs. In particular, we consider the case
where the component codes can have different erasure-correcting capabilities. It is shown
that, similar to irregular PCs [20, 21], HPCs greatly benefit from employing component
codes with different strengths. We further derive upper and lower bounds on the iterative
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decoding thresholds of HPCs with component code mixtures. The upper bound is shown
to have a graphical interpretation in terms of areas related to the DE equations, similar
to the area theorem of irregular LDPC codes.
The remainder of the paper is structured as follows. We start by analyzing HPCs

in Sections 2, 3, and 4. In particular, in Section 2 we discuss the code construction,
the decoding algorithm, and state the main result about the asymptotic performance of
HPCs in Theorem 1. In Section 3, we review the necessary background about random
graphs and branching processes related to the proof of Theorem 1, which is then given in
Section 4. In Section 5, we extend Theorem 1 to a general deterministic construction of
GPCs and derive the corresponding DE equations. The optimization of component code
mixtures for irregular HPCs is studied in Section 7. The paper is concluded in Section 8.

1.1 Notation
The following notation is used throughout the paper. We define the sets [n] , {1, 2, . . . , n},
N0 , {0, 1, 2, . . . }, and N , {1, 2, . . . }. The cardinality of a set A is denoted by |A|.
Sequences are denoted by (xn)n≥1 = x1, x2, . . .. The probability density function (PDF)
of a random variable (RV) X is denoted by fX( · ). Expectation and probability are
denoted by E [ · ] and P ( · ), respectively. We write X ∼ B(p) if X is a Bernoulli RV
with success probability p, X ∼ Bin(n, p) if X is a Binomial RV with parameters n and
p, and X ∼ Po(λ) if X is a Poisson RV with mean λ. With some abuse of notation,
we write, e.g., P (Po(λ) ≥ t) for P (X ≥ t) with X ∼ Po(λ). We define the Poisson tail
probability as Ψ≥t(λ) , P (Po(λ) ≥ t) = 1 −∑t−1

i=0 Ψ=i(λ), where Ψ=i(λ) , λi

i! e
−λ. We

use boldface to denote vectors and matrices (e.g., a and A). Matrix transpose is denoted
by ( · )ᵀ. Convergence in distribution (weak convergence) is denoted by d−→ and conver-
gence in probability by P−→. For positive real functions, standard asymptotic notation (as
n → ∞) will be used, e.g., we write f(n) = O(g(n)) if there exist constants k, n0 such
that f(n) ≤ kg(n) for all n > n0. We write f(n) = Ω(g(n)) if there exist constants k, n0
such that f(n) ≥ kg(n) for all n > n0. We write f(n) = Θ(g(n)) if both f(n) = O(g(n))
and f(n) = Ω(g(n)). Finally, a code is called an (n, k, d) code if it is linear and it has
length n, dimension k, and minimum distance d.

2 Half-Product Codes

2.1 Code Construction
Let C be a binary (n, kC , t + 1) code and recall that such a code can correct all erasure
patterns up to weight t. An HPC is constructed as follows (cf. [11, Sec. III-B]). Start
with a conventional PC defined as the set of n×n arrays such that each row and column
is a codeword in the component code C. Then, form a subcode of this PC by retaining
only symmetric codeword arrays (i.e., arrays that are equal to their transpose) with a
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Figure 1: Illustrations for an HPC with n = 5. In the array, “*” means “equal to the transposed
element”. The highlighted array elements illustrate one particular code constraint,
which is also highlighted in the Tanner graph.

zero diagonal. After puncturing the diagonal and the upper (or lower) triangular part
of the array, one obtains an HPC of length m =

(
n
2
)
. The Tanner graph representing an

HPC is obtained from a complete graph with n vertices by interpreting each vertex as
a CN corresponding to C (shortened by one bit) and replacing each of the m edges by
two half-edges joint together by a VN [11, Sec. III-B].1 In the following, we assume some
fixed (and arbitrary) ordering on the CNs and VNs.
Example 1. Figs. 1(a) and (b) show the code array and Tanner graph of an HPC for
n = 5 and m = 10. The highlighted array elements show the code symbols participating
in the second row constraint, which, due to the enforced symmetry, is also the second
column constraint. Effectively, each component code acts on an L-shape in the array,
i.e., both a partial row and column, which includes the array diagonal. The degree of
each CN is n− 1 = 4, due to the zeros on the diagonal. For example, for the highlighted
CN in Fig. 1(b), the second bit position of C is shortened (i.e., set to zero). Different
bit positions are shortened for different CNs. Thus, the effective (n − 1, kC − 1, t + 1)
component codes associated with the CNs are not necessarily the same. 4
Remark 1. Recall that for a Tanner graph with generalized CNs, the edges emanating
from each CN should also be labeled with the corresponding component code bit positions
[5, Sec. II]. For HPCs, this assignment is implicitly given due to the array description.
For example, the edges emanating from the highlighted CN in Fig. 1(b) correspond to bit
positions 1, 5, 4, and 3 (in left-to-right order). Reshuffling these assignments may result
in an overall code with different properties (e.g., rate) even though the Tanner graph
remains unchanged [5, Sec. II], [11, Sec. III-A]. However, for the considered iterative
decoder, the performance remains identical as long as the component code associated
with each CN is able to correct t erasures, regardless of the bit position assignment.
We consider the limit n→∞, i.e., we use the number of CNs in the Tanner graph to

1One way to see this is to incorporate the symmetry constraint into the Tanner graph of a PC by
connecting each VN to the “transposed” VN through a single parity-check (forcing the two to be
equal). The graph now consists of degree-3 VNs (one row, one column, and one symmetry constraint),
but can be simplified by removing all row (or column) constraints.
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denote the problem size as opposed to the code length m = O(n2). Assuming that C has
a fixed erasure-correcting capability2, this limit is sometimes referred to as the high-rate
scaling limit or high-rate regime [31]. Indeed, if C has dimension kC , the rate of an HPC
is lower-bounded by [7, Sec. 5.2.1] (see also [5, Th. 1])

R ≥ 1− n(n− 1− (kC − 1))
m

= 1− 2n− kC
n− 1 . (D.1)

For a fixed erasure-correcting capability, we can assume that n− kC in (D.1) stays con-
stant. It follows that R → 1 as n → ∞. Note that the dimension of an HPC is
kC(kC − 1)/2 [11, Sec. III-B], [37, Lem. 8], which leads to a slightly larger rate than the
lower bound in (D.1).

2.2 Binary Erasure Channel
Suppose that a codeword of an HPC is transmitted over the BEC with erasure probability
p. Let Ik be the number of initial erasures associated with the k-th component code
constraint. Due to symmetry, we have E [Ik] = p(n − 1) for all k ∈ [n]. Moreover,
using a Chernoff bound, it can be shown that Ik concentrates around its mean (see,
e.g., [19, Sec. IV]). As a consequence, for a fixed p > 0 and n → ∞, we see that any
decoding attempt will be futile since E [Ik] → ∞ for all k, but, on the other hand, we
assumed a finite erasure-correcting capability for the component codes. We therefore let
the erasure probability decay slowly as p = c/n, for a fixed c > 0. Since now p → 0
as n → ∞, one may (falsely) conclude that decoding will always be successful in the
asymptotic limit. As we will see, however, the answer depends crucially on the choice of
c. It is thus instructive to interpret c as the “effective” channel quality for the chosen
scaling of the erasure probability. From the above discussion, its operational meaning is
given in terms of the expected number of initial erasures per component code constraint
for large n, i.e., E [Ik] = c(n− 1)/n ≈ c.
Remark 2. One may alternatively assume a fixed erasure probability p, in conjunction
with sequences of component codes that can correct a fixed fraction of erasures in terms
of their block length. However, in that case, a simple analysis reveals that the (half-
)product construction is essentially useless in the limit n → ∞, and it is indeed better
to just use the component code by itself (see the discussion in [19, Sec. IV]).

2.3 Iterative Decoding
Suppose decoding is performed iteratively for ` iterations according to the following
procedure. In each iteration, perform BDD for all CNs based on the values of the
connected VNs. Afterwards, update previously erased VNs according to the decoding
outcome. Updates are performed whenever there exists at least one CN where the weight
2More precisely, we consider sequences of codes with increasing length and fixed erasure-correcting
capability.
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of the associated erasure pattern is less than or equal to t. If the weight exceeds t, we
say that the corresponding component code declares a decoding failure.
Remark 3. The decoding can alternatively be interpreted as an (intrinsic) message-
passing decoder. In the first iteration, all VNs forward the received channel observa-
tions to the connected CNs. Then, CNs perform BDD based on all incoming messages
and update their outgoing messages according to the decoding outcome. In subsequent
iterations, outgoing VN messages are changed from erased to known if any of the two
incoming CN messages becomes known. These update rules for VN and CN messages
are not extrinsic (cf. [24, p. 117]), since the outgoing message along an edge may depend
on the incoming message along the same edge.

An efficient way to represent the decoding is to consider the following peeling pro-
cedure. First, form the residual graph from the Tanner graph by deleting VNs and
adjacent edges associated with correctly received bits and collapsing erased VNs into
edges [9,11,19]. Then, in each iteration, determine all vertices that have degree at most
t and remove them, together with all adjacent edges. The decoding is successful if the
resulting graph is empty after (at most) ` iterations.
Example 2. Fig. 1(c) shows the residual graph for the HPC in Example 1, where c2, c3,
c4, c7, and c9 are assumed to be erased. One may check that for t = 1, the decoding
gets stuck after one iteration while for t = 2, the decoding finishes successfully after two
iterations. 4
Remark 4. The above parallel peeling procedure should not be confused with the se-
quential “peeling decoder” described in, e.g., [24, p. 117]. That decoder uses a different
scheduling where vertices are removed sequentially and not in parallel, i.e., in each step
one picks only one vertex with degree at most t (uniformly at random) and removes
it [24, p. 117].

2.4 Asymptotic Performance
For a fixed `, we wish to characterize the asymptotic decoding performance as n → ∞.
We start by giving a heuristic argument behind the result stated in Theorem 1 below.
For a similar discussion in the context of cores in random graphs, see [34, Sec. 2].

• Consider a randomly chosen CN. The decoding outcome of the BDD for this CN
after ` iterations depends only on the depth-` neighborhood3 of the vertex in the
residual graph corresponding to this CN. The residual graph itself is an instance
of the Erdős–Rényi random graph model G(n, p), which consists of n vertices. An
edge between two vertices exists with probability p = c/n, independently of all
other edges.

3The depth-` neighborhood of a vertex is the subgraph induced by all vertices that can be reached by
taking ` or fewer steps from the vertex.

D9



Paper D

• For large n, the fixed-depth neighborhood approximately looks like a Poisson
branching process, which starts with an initial vertex at depth 0 that has a Poisson
number of neighboring vertices with mean c that extend to depth 1. Each of these
vertices has again a Poisson number of neighboring vertices, independently of all
other vertices, and so on.

• For large n and fixed `, one would therefore expect the probability that an individual
CN declares a failure to be close to the probability that the root vertex of the
first ` generations of the branching process survives the same peeling procedure as
described for the residual graph. We define the latter probability as z(`). We will
see in Section 4.3 that

z(`) = Ψ≥t+1(cx(`−1)), (D.2)

where the function Ψ≥t is defined in Section 1.1 and x(`) is defined recursively by
x(0) = 1 and

x(`) = Ψ≥t(cx(`−1)). (D.3)

The main result for HPCs is as follows.

Theorem 1. Let Wk be the indicator RV for the event that the k-th component code
declares a decoding failure after ` iterations of decoding and let the fraction of failed
component codes be W = 1

n

∑n
k=1Wk. Then, we have

lim
n→∞

E[W ] = z(`). (D.4)

Furthermore, for any ε ≥ 0, there exist δ > 0, β > 0, and n0 ∈ N such that for all n > n0
we have

P (|W − E[W ]| ≥ ε) ≤ e−βnδ . (D.5)

Proof. The proof is given in Section 4.

Remark 5. In our notation, we largely suppress the dependence of the involved RVs on
n and ` (e.g., one could write W (n,`) instead of W ).
Combining (D.4) and (D.5) allows us to conclude that the code performance after

` iterations (measured in terms of the RV W , i.e., the fraction of component codes
that declare failure) converges almost surely to a deterministic value, i.e., it sharply
concentrates around z(`) for sufficiently large n. This result is analogous to the DE
analysis of LDPC codes [17, Th. 2], and hence, we refer to (D.2) and (D.3) as the DE
equations.
The chosen performance measure in Theorem 1 is the most natural one for the proof

in Section 4. It is, however, possible to relate (D.2) and (D.3) to other performance
measures that are more relevant in practice.
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Figure 2: DE and simulation results for HPCs with t = 4 as a function of the iteration number
`.

Example 3. The meaning of the quantity x(`) is given in Section 4.3 in terms of the Poisson
branching process. The operational meaning in the coding context is as follows. Consider
a randomly chosen erased bit. Asymptotically, x(`) corresponds to the probablity that the
bit is not recovered after ` decoding iterations by one of the two corresponding component
codes. Since each bit is protected by two component codes, the overall probability of
not recovering the bit is asymptotically given by (x(`))2. In Fig. 2, we plot the resulting
DE prediction (x(`))2 as a function of c for t = 4 and different values of `, together
with simulation results of the (scaled) bit error rate (BER) for n = 1000 and n = 5000.
Asymptotically as n → ∞, we expect the simulation results to converge to the solid
lines. 4

Theorem 1 can be seen as an application of [23, Th. 11.6], except for the concentration
bound in (D.5). In fact, [23, Th. 11.6] applies to a more general class of inhomogeneous
random graphs, and we use it later when studying generalizations to other GPCs. The
reason for including a separate proof for HPCs in Section 4 is two-fold. First, since [23,
Th. 11.6] applies to a more general class of random graphs, it is instructive to consider
the simplest case, i.e., the random graph G(n, p) corresponding to HPCs, separately and
in more detail. Second, rather than relying on [23, Th. 11.6], a self-contained proof of
Theorem 1 allows us to point out similarities and differences to the DE analysis for LDPC
codes in [17,25], which we believe many readers are familiar with.

As mentioned in [11], iterative decoding of HPCs over the BEC is closely related to
the emergence of a k–core in G(n, p). First observe that the overall decoding is successful
if the RV W is strictly zero, i.e., if none of the component decoders declare failure.
The existence of a core can then be related to the overall decoding failure assuming
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an unrestricted number of iterations. Therefore, there is a subtle difference between
studying the core and the overall decoding failure in our setup. In our case, the notion of
decoding failure is always linked to the number of decoding iterations, which is assumed
to be fixed (cf. [24, Sec. 3.19]). As a consequence, even though the overall decoding may
fail after a finite number of iterations, there need not be a core in the residual graph.
(The decoding may have been successful if we had done one more iteration, say.) Linking
the decoding failure to the number of iterations has the advantage that it can always be
determined locally (within the neighborhood of each vertex), whereas the core is a global
graph property. In general, additional effort is required to infer information about global
graph properties from local ones [38, Sec. 3.3], [39].

3 Random Graphs and Branching Processes
In this section, we review the necessary background related to the proof of Theorem 1
in Section 4.

3.1 Random Graphs
Let G(n, p) be the Erdős–Rényi model (also known as the Gilbert model) of a random
graph with n vertices, where each of the m =

(
n
2
)
possible edges appears with probability

p, independently of all other edges [35, 36]. A helpful representation of this model is
to consider a random, symmetric n × n adjacency matrix θ with entries θi,i = 0 and
θi,j(= θj,i) ∼ B(p). We use G to denote a random graph drawn from G(n, p). For the
remainder of the paper, we fix p = c/n.
Example 4. Let Dk =

∑n
j=1 θk,j be the degree of the k-th vertex. For any k ∈ [n],

Dk ∼ Bin(n−1, c/n) with E [Dk] = (n−1)c/n. For large n, all degrees are approximately
Poisson distributed with mean c. More precisely, let (Dn)n≥1 be a sequence of RVs
denoting the degrees of randomly chosen vertices in G(n, c/n) and D ∼ Po(c). Then,
Dn

d−→ D. 4
The following result about the maximum vertex degree will be used in the proof of the

concentration bound (D.5).

Lemma 1. Let Dmax , maxi∈[n]
∑n
j=1 θi,j be the maximum degree of all vertices in the

random graph G. We have

P (Dmax ≥ dn) ≤ e−Ω(dn), (D.6)

where dn is any function of n satisfying dn = Ω(log(n)).

Proof. The proof is standard and relies on Chernoff’s inequality and the union bound.
For completeness, a proof is given in Appendix A.
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The random graph G is completely specified by all its edges, i.e., by the m RVs θi,j
for 1 ≤ j < i ≤ n. It is sometimes more convenient to specify these RVs in a length-m
vector instead of a matrix. With some abuse of notation, we also write θ = (θ1, . . . , θm)ᵀ,
asserting that there is a one-to-one correspondence between θk and θi,j .

Example 5. Let E =
∑m
k=1 θk be the number of edges in G. Then, E ∼ Bin(m, c/n) and

the expected number of edges grows linearly with n since E [E] = mp = (n− 1)c/2. 4

3.2 Neighborhood Exploration Process
An important tool to study the neighborhood of a vertex in G(n, p) is the so-called
exploration process which we briefly review in the following (see, e.g., [40, Sec. 10.4], [41,
Ch. 4] for details). This process explores the neighborhood in a breadth-first manner,
exposing one vertex at a time. Since we are only interested in exploring the neighborhood
up to a fixed depth, we modify the exploration compared to [40, Sec. 10.4], [41, Ch. 4]
and stop the process once all vertices in the entire neighborhood for a given depth ` are
exposed. During the exploration, a vertex can either be active, explored, or neutral. At
the beginning (time t = 0), one vertex v is active and the remaining n − 1 vertices are
neutral. At each time t ≥ 1, we repeat the following steps.

1. Choose an active vertex that is closest to v (at time t = 1, choose v itself) and
denote it by w.

2. Explore all edges (w,w′), where w′ runs through all active vertices. If such an edge
exists, the explored neighborhood is not a tree. (Apart from this fact, this step has
no consequences for the exploration process.)

3. Explore all edges (w,w′), where w′ runs through all neutral vertices. Set w′ active
if the edge exists.

4. Set w explored.

Let Xt be the number of vertices that become active at time t (i.e., in step 3). The
number of active vertices, At, and neutral vertices, Nt, at the end of time t is given by

At = At−1 +Xt − 1, Nt = n− t−At, (D.7)

with A0 = 1. One can also explicitly write

At = St − (t− 1), Nt = (n− 1)− St, (D.8)

where St ,
∑t
i=1Xi. Given Nt−1, we have that Xt ∼ Bin(Nt−1, p) because each neutral

vertex can become active at time t with probability p [40, p.165].
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Figure 3: The neighborhood of depth ` = 2 after J2 = 4 steps in the exploration corresponding
to Example 6 in the text.

We define the stopping time J` of the process (Xt)t≥1 to be the time when the entire
depth-` neighborhood has been exposed.4 Formally, J` is recursively defined as

J` =
J`−1∑
i=1

Xi + 1 = SJ`−1 + 1, (D.9)

for ` ∈ N, where J0 = 0 (i.e., J1 = 1, J2 = X1 + 1, J3 =
∑X1+1
i=1 Xi + 1, and so on).

We further use Z` to denote the number of vertices at depth `, where Z0 = 1, and
we let T` =

∑`
l=0 Zl be the total number of vertices in the entire depth-` neighborhood.

Observe that Z` = AJ` , i.e., the number of vertices at depth ` corresponds to the number
of active vertices at the stopping time J`. We also have J` = T`−1, i.e., the stopping time
for depth ` corresponds to the number of all vertices up to depth `− 1.

Example 6. Assume ` = 2. An example of the neighborhood is shown in Fig. 3. The
corresponding realization of the stopped exploration process (X1, . . . , XJ`) is given by
(3, 3, 0, 2), where we assumed a left-to-right ordering of vertices. We have J2 = T1 =
4. Observe that all vertices in the neighborhood are exposed. However, there may
still be connections between any of the (active) vertices at depth 2, in which case the
neighborhood contains cycles. 4

4In [40, Sec. 10.4], [41, Ch. 4], the exploration process is used to study the connected components in
G(n, p). In that case, the stopping time is commonly defined as the hitting time J , inf{t ∈ N : At = 0},
i.e., the time when we run out of active vertices during the exploration.
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3.3 Branching Processes
A (Galton–Watson) branching process with offspring distribution ξ̄ is a discrete-time
Markov chain (Z̄`)`≥0 defined by [42, Ch. 8]

Z̄0 = 1 and Z̄`+1 =
Z̄∑̀
i=1

ξ̄`,i, (D.10)

where (ξ̄`,i)`,i≥0 is a two-dimensional sequence of i.i.d. N0-valued RVs with distribution
ξ̄`,i ∼ ξ̄. In our context, the interpretation of the process is as follows. Start with one
vertex at depth ` = 0 which has a random number of neighboring (or offspring) vertices
extending to depth 1. Each of the vertices at depth 1 (if there are any) has again a
random number of offspring vertices, independently of all other vertices, and so on. Z̄`
is the total number of vertices at depth `, whereas ξ̄`,i is the number of offspring vertices
of the ith vertex at depth `. We further define the total number of vertices up to (and
including) depth ` as T̄` =

∑`
l=0 Z̄l.

The exploration process in the previous subsection is closely related to a Poisson
branching process with mean c, i.e., the case where ξ̄ = Po(c). The connection be-
comes apparent by considering the random-walk perspective of the branching process [41,
Sec. 3.3]. Here, the number of offspring vertices is specified in a one-dimensional fashion,
indexed by t, and denoted by X̄t. The indexing is done breadth-first, in a predetermined
order, e.g., left to right. In particular, we have

Āt = Āt−1 + X̄t − 1 (D.11)

with Ā0 = 1, similar to (D.7). The crucial difference with respect to the exploration
process is that X̄t ∼ ξ̄ for all t.

Similar to the exploration process, we recursively define the stopping time for the
process (X̄t)t≥1 as J̄` =

∑J̄`−1
i=1 X̄i + 1 with J̄0 = 0 (cf. (D.9)), where J̄` = T̄`−1. Thus,

the stopped process (X̄1, · · · , X̄J̄`
) specifies the branching process up to depth `.

4 Proof of Theorem 1
In the following, we provide a proof of Theorem 1. In Section 4.1, we show that, with
high probability, the depth-` neighborhood of a vertex in the residual graph G is a tree.
We use this result in Section 4.2 to show the convergence of the expected decoding
outcome for an individual CN after ` iterations to the decoding outcome when evaluated
on the branching process. The iterative decoding on the branching process (also known
as DE) is analyzed in Section 4.3. Finally, the concentration bound in (D.5) is shown in
Section 4.4.

The tree-like behavior and the convergence of the neighborhood in G(n, c/n) to the
Poisson branching process are certainly well-known within the random-graph-theory lit-
erature. For example, this type of convergence is sometimes referred to as local weak
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convergence, see, e.g., [43] or [44, Prop. 2.3.1]. Here, we give a simple proof based on
stochastic processes and stopping times.

4.1 Tree-like Neighborhood
Lemma 2. Let BG(k, `) denote the depth-` neighborhood of the k-th vertex in G. Then,
for any k ∈ [n], we have

P (BG(k, `) is a tree) ≥ 1− β(c, `)
n

, (D.12)

where β(c, `) depends only on c and `.

Proof. We can use the exploration process in Section 3.2 to show that the total number
of potential edges that could create a cycle during the exploration (i.e., in step 2) is given
by

N` =
J∑̀
i=1

(Ai−1 − 1) +
(
Z`
2

)
. (D.13)

In particular, at each time t up to the random stopping time J`, there exist At−1 − 1
“exposed” vertices, in the sense that these vertices are known to be part of the neigh-
borhood, but have not yet been explored. Each of the At−1 − 1 potential edges to these
vertices creates a cycle. Furthermore, at the stopping time J`, there exist Z` exposed
vertices at depth `, with

(
Z`
2
)
potential edges between them, each of which creates a cycle

(see, e.g., Fig. 3). For the neighborhood to be a tree, all of these edges must be absent.
Since any edge in the exploration will not appear with probability 1−c/n, independently
of all other edges, we have

P (BG(k, `) is a tree) = E
[(

1− c

n

)N`]
(D.14)

≥ 1− c

n
E [N`] . (D.15)

Surely, N` cannot be larger than the total number of possible edges in the neighbor-
hood, i.e., N` ≤

(
T`
2
)
≤ T 2

` /2, where we recall that T` is the total number of vertices
encountered. Inserting this bound into (D.15) and using the bound (D.106) on E[T 2

` ] in
Appendix B (which depends only on c and `) completes the proof.

Remark 6. The analogous result for (regular) LDPC code ensembles is given in [17,
App. A] (see also [45, Sec. 2.2]). The main difference with respect to the proof in [17,
App. A] (and its extension to irregular ensembles with bounded maximum VN and CN
degree) is that the number of vertices in the neighborhood cannot be upper bounded by
a constant which is independent of n. (In [17], n corresponds to the LDPC code length.)
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4.2 Convergence to the Poisson Branching Process
It is well-known that the degree of a vertex in G(n, c/n) converges to a Poisson RV
with mean c as n → ∞ (see Example 4). More generally, for any finite t, and any
(x1, · · · , xt) ∈ Nt0, one can easily show that (see, e.g., [41, Sec. 4.1.2])

lim
n→∞

fX1,...,Xt(x1, . . . , xt) = fX̄1
(x1) · . . . · fX̄t(xt), (D.16)

where X̄1, . . . , X̄t are i.i.d. Po(c). This, together with Lemma 2, implies that the dis-
tribution on the shape of the neighborhood (for any fixed depth) converges to a Pois-
son branching process with mean c. To see this, note that under the assumption that
the neighborhood is tree-like, its shape is specified by the stopped exploration process
(X1, . . . , XJ`). Each realization of (X1, · · · , XJ`) is a vector of some (finite) length spec-
ifying the number of offspring vertices in the tree in a sequential manner. The set of all
realizations is thus a subset of N∗0 = N0 ∪ N2

0 ∪ N3
0 ∪ · · · . Since N∗0 is countably infinite,

there exists a one-to-one mapping between N∗0 and N0. We denote such a mapping by
M : N∗0 → N0 and letM−1 be its inverse. We now define new RVs Bn =M(X1, · · · , XJ`)
and B =M(X̄1, · · · , X̄J̄`

). One can think about enumerating all possible trees and as-
signing an index to each of them. A distribution over the shape of the trees is then
equivalent to a distribution over the indices. It is now easy to show that Bn

d−→ B. For
any b ∈ N0, there exists some t such that M−1(b) = (x1, · · · , xt) ∈ Nt0. Therefore, we
have

lim
n→∞

P (Bn = b) (D.17)

= lim
n→∞

fJ`|X1,...,Xt(t|x1, · · · , xt)fX1,...,Xt(x1, · · · , xt) (D.18)

= fJ̄`|X̄1,...,X̄t
(t|x1, · · · , xt) lim

n→∞
fX1,...,Xt(x1, · · · , xt) (D.19)

(D.16)= fJ̄`|X̄1,...,X̄t
(t|x1, · · · , xt)fX̄1

(x1) · . . . · fX̄t(xt) (D.20)
= P (B = b), (D.21)

where, to obtain (D.19) from (D.18), we used the fact that the conditional distributions
of the stopping times J` and J̄` given X1, . . . , Xt and X̄1, . . . , X̄t, respectively, are equal
and independent of n. These distributions are simply indicator functions for the event
that (x1, . . . , xt) ∈ Nt0 fully specifies a tree of depth `.
A direct consequence of this result is that the expected value of a (bounded) function

applied to the neighborhood of a vertex in G(n, c/n) converges to the expected value of
the same function applied to the branching process. In particular, recall that the RV
W = 1

n

∑n
k=1Wk corresponds to the fraction of component codes that declare failures

after ` decoding iterations. The indicator RV Wk depends only on the shape of the
depth-` neighborhood of the k-th vertex in the residual graph. The peeling procedure
can thus be written using a function D` : N0 → {0, 1}, such that

E[Wk |BG(k, `) is a tree] = E[D`(Bn)], (D.22)
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which, due to symmetry, is independent of k. Since Bn
d−→ B and D` is bounded, we

have that [46, Sec. 10]

lim
n→∞

E[D`(Bn)] = E[D`(B)] = z(`), (D.23)

which, together with (D.12), implies (D.4).
Remark 7. It is worth mentioning that for regular LDPC code ensembles, there is no
notion of an asymptotic neighborhood distribution (in the sense of (D.16)) beyond the
fact that cycles can be ignored. This is because the ensemble of computation trees for a
CN (or VN) reduces to a single deterministic tree.

4.3 Density Evolution
Once the true distribution on the neighborhood-shape has been replaced by the branching
process, the parameter of interest can be easily computed (cf. [34, Sec. 2], [38, p. 43]). In
our case, the parameter of interest is the probability that a CN declares a decoding failure
after ` iterations as n→∞, or, equivalently, the probability that the root vertex of the
branching process survives ` peeling iterations. Due to the recursion that is inherent in
the definition of the branching process, it is not surprising that the solution is also given
in terms of a recursion. This is, of course, completely analogous to the analysis of LDPC
code ensembles, see, e.g., the discussion in [45, Sec. 1]. Also, similar to LDPC codes over
the BEC, we refer to this step as DE (even though the parameter of interest does not
correspond to a density).
Consider a Poisson branching process with mean c. Assume that we have a realization

of this process (i.e., a tree) up to depth `. We wish to determine if the root vertex
survives ` iterations of the peeling procedure (and thus the CN corresponding to the
root node declares a decoding failure). One can recursively break down the answer as
follows. First, for each of the root’s offspring vertices, apply `−1 peeling iterations to the
subtree that has the offspring vertex as a root (and extends from depth 1 to `). Then,
if the number of offspring vertices that survive this peeling is less than or equal to t,
remove the root vertex. This gives the same answer as applying ` peeling iterations to
the entire tree, since we are simply postponing the removal decision for the root to the
`-th iteration.
Now, in order to determine the corresponding probability with which the root vertex

survives the peeling procedure, the crucial observation is that the root’s offspring ver-
tices are removed independently of each other, and with the same probability. This is
a simple consequence of the definition of the branching process and the independence
assumption between the number of offspring vertices (see Section 3.3). Recall that we
defined the root survival probability as z(`). Furthermore, we denote the survival proba-
bility of the root’s offspring vertices by x(`−1). Initially, the number of offspring vertices
is Poisson distributed with mean c. After removing each offspring vertex independently
with probability 1 − x(`−1), the offspring distribution of the root vertex follows again a
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4 Proof of Theorem 1

Poisson distribution, albeit with (reduced) mean cx(`−1). (This is easily seen by using
characteristic functions.) Hence, we obtain (D.2).

Essentially the same argument can be used to determine x(`). The only difference
is that for offspring vertices we have to account for the fact they are connected to the
previous level with an edge. Thus, they can be removed only if less than or equal to t−1
(and not t) of their offspring vertices survive. This leads to the recursion (D.3), where
the initial condition is given by x(0) = 1.

4.4 Concentration
The concentration bound in (D.5) is readily proved by using the method of typical
bounded differences [47]. In particular, we can apply a special case of [47, Cor. 1.4]
which is stated below (with adjusted notation) for easier referencing.

Theorem 2 ( [47]). Let θ = (θ1, . . . , θm)ᵀ be a vector of independent RVs with θk ∼ B(p)
for all k. Let Γ ⊆ {0, 1}m be an event and let f : {0, 1}m → R be a function that
satisfies the following condition. There exist Λ and Λ′ with Λ ≤ Λ′ such that whenever
θ,θ′ ∈ {0, 1}m differ in only one coordinate, we have

|f(θ)− f(θ′)| ≤
{

Λ if θ ∈ Γ
Λ′ otherwise

. (D.24)

Then, for any a ≥ 0 and any choice of γ ∈ (0, 1], we have

P (|f(θ)− E[f(θ)]| ≥ a) ≤ mγ−1P (θ /∈ Γ)

+ exp
(
− a2

2m(1− p)p(Λ + b)2 + 2(Λ + b)a/3

)
,

(D.25)

where b = γ(Λ′ − Λ).

In our context, θ specifies the edges in the random graph G (see Section 3). Thus, we
can think about θ and θ′ as specifying two different graphs G = G(θ) and G′ = G(θ′).
The interpretation of the condition (D.24) is as follows. For any two graphs G,G′ that
differ in only one edge, we have |f(G)− f(G′)| ≤ Λ′, where f denotes a function applied
to the graphs. The constant Λ′ is often referred to as the Lipschitz constant [47]. The
event Γ is chosen such that changing one coordinate in θ ∈ Γ (i.e., adding or removing
an edge in the graph defined by θ) changes the function by at most Λ, where Λ should
be substantially smaller than Λ′. The constant Λ is referred to as the typical Lipschitz
constant. In this regard, the event Γ is assumed to be a typical event, i.e., it should occur
with high probability.
Remark 8. In several applications, it is possible to establish concentration bounds based
solely on suitable choices for Λ′. This approach leads to the more common bounded
differences inequality (also known as McDiarmid’s or Hoeffding-Azuma inequality). For
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example, the concentration bound for LDPC code ensembles in [17, Eq. (11)] is based
on this approach. However, in many cases (including the one considered here) the worst
case changes corresponding to Λ′ can be quite large, even though the typical changes
may be small. For more details, we refer the reader to [47] and references therein.
Theorem 2 is applied as follows. We let f(θ) = nW =

∑n
k=1Wk. Since f is the sum of

n indicator RVs, we can choose Λ′ = n. We further let Γ be the event that the maximum
vertex degree in G, denoted by Dmax, is strictly less than nδ for some fixed δ ∈ (0, 1). For
the typical Lipschitz constant, we choose Λ = 2(`+ 1)nδ`. To show that for these choices
the condition (D.24) holds, we argue as follows. First, observe that the maximum vertex
degree in both G and G′ is at most nδ since adding an edge to the graph G increases the
maximum degree by at most one (and removing an edge can only decrease the maximum
degree). Consider now the maximum change in

∑n
k=1Wk that can occur by adding or

removing an edge between two arbitrary vertices i and j under the assumption that
the maximum degree remains bounded by nδ. Since Wk depends only on the depth-`
neighborhood of the k-th vertex, such a change can only affect Wk if either vertex i or j
(or both) are part of the neighborhood of vertex k. But, due to the bounded maximum
degree, vertex i appears in at most

∑`
l=0 n

δl ≤ (` + 1)nδ` neighborhoods (and so does
vertex j). Hence, the sum

∑n
k=1Wk can change by at most 2(`+ 1)nδ`.

We further choose γ = n−1. Since Λ′ = n, this implies that b ≤ γΛ′ = 1 and therefore
we have

(Λ + b) ≤ (Λ + b)2 ≤ 4Λ2. (D.26)

Consider now the second term on the right-hand side (RHS) of (D.25) with a = nε and
p = c/n. We have

exp
( −(nε)2

2m(1− c/n)c/n(Λ + b)2 + 2(Λ + b)nε/3

)
(D.27)

≤ exp
( −ε2n

(8c+ 8ε/3)Λ2

)
= e−β1n

1−2δ`
(D.28)

where the inequality in (D.28) follows from m ≤ n2, 1− c/n ≤ 1 and (D.26), and in the
last step we used Λ = 2(` + 1)nδ`. Note that the implicitly defined parameter β1 > 0
depends only on ε, c, and `. In order to bound the first term on the RHS of (D.25), we
first note that P (θ /∈ Γ) = P

(
Dmax ≥ nδ

)
. We then have

mγ−1P (θ /∈ Γ) ≤ n3e−β2n
δ ≤ e−β2n

δ/2, (D.29)

where, according to Lemma 1, the first inequality holds for some β2 > 0 and n sufficiently
large. To match the exponents in (D.28) and (D.29), we can set δ = (1 + 2`)−1. This
proves (D.5) and completes the proof of Theorem 1.
Remark 9. The above proof applies to any function of the form f =

∑n
k=1 fk where fk is

an indicator function that depends only on the depth-` neighborhood of the k-th vertex
in G.
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5 Generalized Product Codes

5 Generalized Product Codes
In this section, we analyze a deterministic construction of GPCs for which the residual
graph corresponds to an inhomogeneous random graph [23]. The concept of inhomogene-
ity naturally arises if we wish to distinguish between different types of vertices. In our
case, a type will correspond to a particular position in the Tanner graph and a certain
erasure-correcting capability. HPCs can be regarded as “single-type” or homogeneous,
in the sense that all CNs (and thus all vertices in the residual graph) behave essentially
the same.

5.1 Code Construction
Our code construction is defined in terms of three parameters η, γ, and τ . We denote
the corresponding GPC by Cn(η,γ, τ ), where n denotes the total number of CNs in
the underlying Tanner graph. The two parameters η and γ essentially determine the
graph connectivity, where η is a binary, symmetric L× L matrix and γ = (γ1, . . . , γL)ᵀ
is a probability vector of length L, i.e.,

∑L
i=1 γi = 1 and γi ≥ 0. Since GPCs have a

natural representation in terms of two-dimensional code arrays (see, e.g., Fig. 5), one
may alternatively think about η and γ as specifying the array shape. We will see in
the following that different choices for η and γ recover well-known code classes. The
parameter τ is used to specify GPCs employing component codes with different erasure-
correcting capabilities and will be described in more detail at the end of this subsection.

The Tanner graph describing the GPC Cn(η,γ, τ ) is constructed as follows. Assume
that there are L positions. Place ni , γin CNs at each position i ∈ [L], where we assume
that ni is an integer for all i. Then, connect each CN at position i to each CN at position
j through a VN if and only if ηi,j = 1.
In the following, we always assume that ηi,j = 1 for at least one j and any i ∈ [L]

so that there are no unconnected CNs. Furthermore, we assume that the matrix η is
irreducible, so that the Tanner graph is not composed of two (or more) disconnected
graphs.

Each of the ni CNs at position i has degree

di = ηi,i(ni − 1) +
∑
j 6=i

ηi,jnj . (D.30)

Thus, di is the length of the component codes associated with CNs at position i. The
first term in (D.30) arises from the fact that we cannot connect a CN to itself if ηi,i = 1.
The total number of VNs (i.e., the length of the code) is given by

m =
L∑
i=1

ηi,i

(
ni
2

)
+

∑
1≤i<j≤L

ηi,jninj ≈
γᵀηγ

2 n2. (D.31)

In the following, we assume some fixed (and arbitrary) ordering on the CNs and VNs.
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code array matrix description
η′ = {η′

i,j}

η2i,2j−1 = η′
i,j

η2i−1,2i = η′
j,i

( )
1 1 0 0

0 1 0 0

0 1 1 1

0 0 1 1

1 0 0 0

1 1 1 0

0 0 1 1

0 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

b

b

b

b

b

b b

b ( )
1 0 0 0

1 1 1 0

0 0 1 1

0 0 1 1

Figure 4: Construction of η for an arbitrary code array composed of blocks that are arranged
on a grid. Red elements in η are inserted such that η is symmetric. With this
construction, even (odd) positions in η correspond to row (column) codes.

Remark 10. In the light of Remark 1, we see that the above construction merely specifies
a Tanner graph and not a code. This is due to the missing assignment of the component
code bit positions to the CN edges. Since our results do not depend on this assignment,
it is assumed to be (arbitrarily) fixed. In the following examples, the assignment is
implicitly specified due to an array description.

Example 7. HPCs are recovered by considering η = 1 and γ = 1. All CNs are equivalent
and correspond to component codes of length n− 1. 4

Example 8. Choosing η = ( 0 1
1 0 ) leads to a PC. The relative lengths of the row and

column component codes can be adjusted through γ, where γ = (1/2, 1/2) leads to a
“square” PC with (uniform) component code length n/2. Note that the total number of
CNs n is assumed to be even in this case. 4

Example 9. Consider an arbitrarily shaped code array of finite size which is composed of
blocks of size n′×n′ arranged on a square grid. In Fig. 4, we illustrate how to construct
η for such an array. First, form the matrix η′ representing the array, where entries are
1 if a block is present on the corresponding grid point and 0 otherwise. Assuming that
η′ has size a× b, the matrix η of size (a+ b)× (a+ b) is then constructed by using the
prescription

η2i,2j−1 = η′i,j ,

η2i−1l,2j = η′j,i
(D.32)

for i ∈ [a] and j ∈ [b] and ηi,j = 0 elsewhere. For example, consider a PC where
γ = (1/3, 2/3), i.e., the relative length of the row and column codes is 2 : 3. An
alternative way of describing the code is to consider a matrix description of the array
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ni

ni

2

4

6

1 3 5

(a) staircase code

1

3

5

7

2 4 6 8

ni

ni

(b) block-wise braided code

Figure 5: Examples of code arrays for (a) staircase codes (see Example 10) and (b) block-wise
braided codes (see Example 11).

according to

η′ =

1 1
1 1
1 1

 , (D.33)

and then form η according to (D.32). The size of each block is assumed to be n′ = n/5.
For the alternative description we have L = 5 and γi = 1/5 for all i. 4

Example 10. For a fixed L ≥ 2, the matrix η describing a staircase code [8] has entries
ηi,i+1 = ηi+1,i = 1 for i ∈ [L − 1] and zeros elsewhere. The distribution γ is uniform,
i.e., γi = 1/L for all i ∈ [L]. For example, the staircase code corresponding to the code
array shown in Fig. 5(a), where L = 6 and n = 36 (i.e., ni = 6), is defined by

η =



0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0


, (D.34)

and γi = 1/6. The CNs at all positions have the same degree 2nγi = 12, except for
positions 1 and L, where the degrees are nγi = 6. 4

Example 11. For even L ≥ 4, the matrix η for a particular instance of a block-wise
braided code has entries ηi,i+1 = ηi+1,i = 1 for i ∈ [L − 1], η2i−1,2i+2 = η2i+2,2i−1 = 1
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for i ∈ [L/2− 1], and zeros elsewhere. For example, we have

η =



0 1 0 1 0 0 0 0
1 0 1 0 0 0 0 0
0 1 0 1 0 1 0 0
1 0 1 0 1 0 0 0
0 0 0 1 0 1 0 1
0 0 1 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0


(D.35)

for L = 8. The corresponding code array is shown in Fig. 5(b), where n = 32 and γ is
uniform. In general, the construction of a block-wise braided code is based on so-called
multiple block permutators (MBPs). An MBP with multiplicity k is anN×N matrix with
k ones in each row and column [22, Def. 2.1]. Given a component code of length nC and
dimension kC , the diagonal and off-diagonal array blocks in Fig. 5(b) correspond to MBPs
with respective multiplicities 2kC − nC and nC − kC , where N ≥ min(2kC − nC , nC − kC).
However, this definition is unnecessarily narrow for our purposes in the sense that the
multiplicities of the MBPs are linked to the dimension of the component code. For
example, for the array shown in Fig. 5(b) (where N = 4 and n = 12), it would be
required that each component code has dimension kC = 8 in order to comply with the
definition in [22]. Here, we simply lift the constraint that the multiplicities of the MBPs
are linked to the component code dimension. The only requirement for the considered
GPC construction is that the MBPs have a block-wise structure themselves, see Fig. 6
for an example. Note that η can be found by following the steps in Example 9. 4
Remark 11. Both staircase and braided codes were originally introduced as convolutional-
like codes with conceptually infinite length, i.e., L = ∞. It then becomes customary
to employ a sliding-window decoder whose analysis is discussed in Section 6.3. We also
remark that it is straightforward to extend the above construction of η and γ for staircase
and braided codes to their natural tail-biting versions (see, e.g., [11]).
Up to this point, the GPC construction for a given η, γ, and n specifies the lengths

of the component codes via (D.30). We proceed by assigning different erasure-correcting
capabilities to the component codes corresponding to CNs at different positions. To
that end, for i ∈ [L], let τ (i) = (τ1(i), . . . , τtmax(i))ᵀ be a probability vector of length
tmax, where τt(i) denotes the fraction of CNs at position i (out of ni total CNs) which
can correct t erasures and tmax is the maximum erasure-correcting capability. With
some abuse of notation, the collection of these distributions for all positions is denoted
by τ = (τ (i))Li=1. The assignment can be done either deterministically, assuming that
τt(i)ni is an integer for all i ∈ [L] and t ∈ [tmax], or independently at random according
to the distribution τ (i) for each position.
Example 12. Consider a PC where the row and column codes have the same length
but different erasure-correcting capabilities t and t′, respectively. We have η = ( 0 1

1 0 ),
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Figure 6: A block-wise braided code where the MBPs have a block-wise structure. We have
N = 20, n = 160, and the multiplicities for the diagonal and off-diagonal MBPs are
15 and 5, respectively.

γ = (1/2, 1/2), and additionally τt(1) = 1 and τt′(2) = 1. More generally, the erasure-
correcting capabilities may also vary across the row (and column) codes leading to irreg-
ular PCs [20,21]. 4
Example 13. Staircase codes with component code mixtures were suggested (but not
further investigated) in [48, Sec. 4.4.1]. The case described in [48, Sec. 4.4.1] corresponds
to a fixed choice of τ (i) which is independent of i. 4

5.2 Inhomogeneous Random Graphs
Assume that a codeword of Cn(η,γ, τ ) is transmitted over the BEC with erasure prob-
ability p = c/n, for c > 0. Recall that the residual graph is obtained by removing
known VNs and collapsing erased VNs into edges. We now illustrate how the ensemble
of residual graphs for Cn(η,γ, τ ) is related to the inhomogeneous random graph model.
In [23], inhomogeneous random graphs are specified by a vertex space V and a kernel

κ. Here, we consider only the finite-type case, see [23, Ex. 4.3]. In this case, the number
of different vertex types is denoted by r and the vertex space V is a triple (S, µ, (yn)n≥1),
where S = [r] is the so-called type space, µ : S → [0, 1] is a probability measure on S,
and yn = (y(n)

1 , y
(n)
2 , . . . , y

(n)
n ) is a deterministic or random sequence of points in S such

that for each i ∈ S, we have

|{k : y(n)
k = i}|
n

P−→ µ(i) (D.36)
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as n→∞. For a finite number of vertex types, the kernel κ is a symmetric r× r matrix.
Therefore, we denote the kernel by κ where entries are denoted by κi,j . For a fixed
n > maxi,j κi,j , the inhomogeneous random graph GV(n,κ) is defined as follows. The
graph has n vertices where the type of vertex i is given by y(n)

i . An edge between vertex
i and j exists with probability n−1κ

x
(n)
i
,x

(n)
j

, independently of all other edges.

Remark 12. Even though we use [23] as our main reference, finite-type inhomogeneous
random graphs (and their relation to multi-type branching processes) were first intro-
duced and studied in [49]. See also the discussion in [38, p. 31].
For the code Cn(η,γ, τ ), the residual graph is an instance of an inhomogeneous random

graph with a finite number of types, as defined above. In particular, there are r = Ltmax
different types in total, i.e., we have S = [Ltmax]. In our case, it is more convenient to
specify the type of a vertex by a pair (i, t), where i ∈ [L] corresponds to the position
in the Tanner graph and t ∈ [tmax] corresponds to the erasure-correcting capability. In
the construction of the sequence xn, the assignment of the type corresponding to the
position is always deterministic. For the type corresponding to the erasure-correcting
capability, we have the freedom to do the assignment deterministically or uniformly at
random. In both cases, the fraction of vertices of type (i, t) is asymptotically given by
γiτt(i). This specifies the probability measure µ through the condition (D.36). (For the
random assignment, the condition (D.36) holds due to the weak law of large numbers.)
The kernel κ is obtained from η by replacing each 0 entry with the all-zero matrix of
size tmax × tmax and each 1 entry with a tmax × tmax matrix where all entries are equal
to c.
Remark 13. The inhomogeneous random graph model in [23] is much more general than
the finite-type case described above. In particular, S can be a separable metric space
and κ a symmetric non-negative (Borel) measurable function on S × S. This more
general framework could be used for example to obtain the DE equations for so-called
tightly-braided codes [13,22]. However, in that case the analysis does not admit a char-
acterization in terms of a finite number of types. In particular, the DE equations are
given in terms of integrals and solving the equations may then require the application of
numerical integration techniques.

Similar to the (homogeneous) random graph G(n, p), one may use an alternative rep-
resentation in terms of a random, symmetric n × n adjacency matrix θ with zeros on
the diagonal. The structure of this matrix is shown in Fig. 7. The matrix is composed
of submatrices θi,j of size ni × nj . The submatrix θi,j is zero if ηi,j = 0 and it consists
of i.i.d. B(p) RVs if ηi,j = 1 (with the constraint that the matrix θ is symmetric and all
diagonal elements are zero). The inhomogeneous random graph is thus specified by m
Bernoulli RVs, where m is defined in (D.31).
From the matrix representation, it can be seen that the degree of a vertex at position

k is distributed according to Bin(dk, c/n), where dk is defined in (D.30). Moreover, all
vertices follow a Poisson distribution as n→∞, where the mean for vertices at position
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γ1n γ2n γLn

γLn

γ2n

γ1n

...
...

...

. . .

. . .

. . .

. . .

θL,1 θL,2 θL,L

θ2,1 θ2,2 θ2,L

θ1,1 θ1,2 θ1,L

Figure 7: The structure of the random, symmetric adjacency matrix θ.

k is given by

lim
n→∞

dk
c

n
= c

L∑
j=1

γjηk,j . (D.37)

5.3 Iterative Decoding
After transmission over the BEC, we apply the same iterative decoding as described in
Section 2.3 for the HPC. The only difference is that each component code is assumed to
correct all erasures up to its erasure-correcting capability. In the corresponding iterative
peeling procedure for the residual graph, one removes vertices of degree at most t, where
t is the erasure-correcting capability of the corresponding CN. The erasure-correcting
capability may now be different for different vertices depending on their type.

5.4 Asymptotic Performance
For a fixed number of decoding iterations `, we wish to characterize the asymptotic perfor-
mance as n→∞. The crucial observation is that the distribution on the neighborhood-
shape of a randomly chosen vertex in the residual graph converges asymptotically to a
multi-type branching process [23, Remark 2.13]. In our case, the multi-type branching
process is defined in terms of the code parameters η, γ, and τ . It generalizes the (single-
type) branching process described in Section 3.3 as follows. The process starts with one
vertex at depth 0 which has random type (i, t) with probability γiτt(i). This vertex has
neighboring (or offspring) vertices of possibly different types that extend to depth 1,
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each of which has again neighboring vertices that extend to the next depth, and so on.
For a vertex with type (i, t), the number of offspring vertices with type (j, t′) is Poisson
distributed with mean cηi,jγjτt′(j), independently of the number of offspring vertices of
other types. Since the sum of independent Poisson RVs is again Poisson distributed, we
have that the total number of offspring vertices of a vertex with type (i, t) is Poisson
distributed with mean

L∑
j=1

tmax∑
t′=1

cγjηi,jτt′(j) = c

L∑
j=1

γjηi,j , (D.38)

independently of t (cf. (D.37)). The above multi-type branching process is denoted by
X. We further use X(i, t) to denote the process which starts with a root vertex that has
the specific type (i, t).
Let z(`) be the probability that the root vertex of the first ` generations of X survives

the ` iterations of the peeling procedure. This probability is evaluated explicitly in
Section 5.5 in terms of the code parameters η, γ, and τ . The main result is as follows.

Theorem 3. Let Wk, k ∈ [n], be the indicator RV for the event that the k-th component
code of Cn(η,γ, τ ) declares a decoding failure after ` iterations of decoding and define
W = 1

n

∑n
k=1Wk. Then, we have

lim
n→∞

E[W ] = z(`). (D.39)

Furthermore, for any ε > 0, there exist δ > 0, β > 0, and n0 ∈ N such that for all n > n0
we have

P (|W − E[W ]| > ε) ≤ e−βnδ . (D.40)

Proof. In order to prove (D.39), we apply [23, Th. 11.6]. First, recall the following
definition from [23, p. 74]. Let f(v,G) be a function defined on a pair (v,G), where G
is a graph composed of vertices with different types and v is a distinguished vertex of
G, called the root. The function f is an `-neighborhood function if it is invariant under
type-preserving rooted-graph isomorphisms and depends only on the neighborhood of
the vertex v up to depth `. The RV Wk depends only on the depth-` neighborhood of
the k-th vertex in the residual graph of Cn(η,γ, τ ). Furthermore, the peeling outcome
for the k-th vertex is invariant under isomorphisms as long as they preserve the vertex
type. Hence, the RV Wk can be expressed in terms of an `-neighborhood function D`
as Wk = D`(k,G). That is, the function D` evaluates the peeling procedure on the
depth-` neighborhood of a vertex and thus determines if the corresponding component
code declares a decoding failure after ` iterations. To apply [23, Th. 11.6], we need to
check that we have supn E

[
D`(k,G)4] < ∞. This is true since since D` maps to {0, 1}.

We then have [23, Eq. (11.4)]

lim
n→∞

E [W ] = E [D`(X)] , (D.41)
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where D`(X) is defined by evaluating D` on the branching process X up to depth `,
taking the initial vertex as the root. Therefore, E [D`(X)] = z(`). This result generalizes
the convergence result (D.4) for HPCs (i.e., G(n, c/n)) shown in Sections 4.1 and 4.2.
The proof in [23] relies on a stochastic coupling of the branching process X and the
neighborhood exploration process for GV(n,κ) (which generalizes the exploration process
described in Section 3.2 to handle different vertex types), see [23, Lem. 11.4] for details.

The proof of (D.40) follows along the same lines as the proof for the homogeneous case
in Section 4.4, using again the typical bounded differences inequality. The bound on the
maximum vertex degree for G(n, c/n) in Lemma 1 applies without change also to the
inhomogeneous random graph GV(n,κ). The only difference in the proof in Appendix A
is that the equality in (D.92) becomes an inequality. The choice of the high-probability
event Γ and the typical Lipschitz constant is then the same as described in Section 4.4.

5.5 Density Evolution
In order to compute z(`), we proceed in a similar fashion as described in Section 4.3 and
break down the computation in a recursive fashion. First, note that from the definition
of X and X(i, t), we have

z(`) = E [D`(X)] =
L∑
i=1

tmax∑
t=1

γiτt(i)z(`)
i,t , (D.42)

where

z
(`)
i,t = E [D`(X(i, t))] (D.43)

is the probability that the root vertex of the first ` generations of the branching process
X(i, t) survives the peeling procedure. We claim that

z
(`)
i,t = Ψ≥t+1

c L∑
j=1

tmax∑
t′=1

ηi,jγjτt′(j)x(`−1)
j,t′

 , (D.44)

where x(`)
i,t is recursively given by

x
(`)
i,t = Ψ≥t

c L∑
j=1

tmax∑
t′=1

ηi,jγjτt′(j)x(`−1)
j,t′

 , (D.45)

with x(0)
i,t = 1. The argument is the same as described in Section 4.3. In particular, to

determine the survival of the root of X(i, t) after ` peeling iterations, first determine if
each offspring vertex gets removed by applying `−1 peeling iterations to the correspond-
ing subtree. Then, make a decision based on the number of surviving offspring vertices.
Again, one finds that offspring vertices survive independently of each other, however,
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the survival probability now depends on the vertex type. In particular, in (D.44), the
quantity x(`−1)

i,t is the probability that a type-(i, t) offspring of the root vertex survives
the `−1 peeling iterations applied to its subtree. The argument of the function Ψ≥t+1 in
(D.44) is the mean number of surviving offspring vertices, which, again, is easily found
to be Poisson distributed. Essentially the same arguments can be applied to find (D.45)
by taking into account the connecting edge of each offspring vertex to the previous level
of the tree.
Using the substitution x

(`)
i =

∑tmax
t=1 τt(i)x(`)

i,t , it is often more convenient to express
z(`) in terms of

z(`) =
L∑
i=1

γj

tmax∑
t=1

τt(i)Ψ≥t+1

c L∑
j=1

ηi,jγjx
(`−1)
j

 , (D.46)

where

x
(`)
i =

tmax∑
t=1

τt(i)Ψ≥t

c L∑
j=1

ηi,jγjx
(`−1)
j

 (D.47)

with x(0)
i = 1 for all i ∈ [L].

6 Discussion
Before considering a direct application of the obtained DE equations in the next section,
we briefly discuss some relevant topics regarding their general application.

6.1 Thresholds and Code Comparisons
The decoding threshold for Cn(η,γ, τ ) can be defined in terms of the effective channel
quality as

c∗ , sup{c > 0 | lim
`→∞

z(`) = 0}. (D.48)

Recall that in the code construction in Section 5.1, γ is assumed to be a distribution,
i.e., we have

∑L
i=1 γi = 1. This assumption turns out to be convenient in the formulation

and proof of Theorem 3 since it ensures that the number of CNs in the Tanner graph
is always given by n. However, when comparing the performance of different GPCs (for
example in terms of thresholds computed via (D.48)), it is more appropriate to lift this
assumption and replace γi by a rescaled version aγi for all i and some constant a. This
simply corresponds to scaling the total number of CNs to an.
A reasonable scaling to compare different codes is to choose a such that the effective

channel quality c can be interpreted asymptotically as the average number of initial
erasures in each component code, similar to HPCs in Section 2.3. Since each component
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code at position i initially contains anC,ic/n erasures, by averaging over all positions we
obtain

lim
n→∞

a
c

n

L∑
i=1

γi

∑
j 6=i

γjnηi,j + ηi,i(γin− 1)

 (D.49)

= ac

L∑
i=1

γi

L∑
j=1

γjηi,j = acγᵀηγ. (D.50)

Setting (D.50) equal to c leads to

a = 1
γᵀηγ

. (D.51)

Example 14. For staircase codes (see Example 10), we obtain a = (2L−2)/L2. For large
L, a ≈ 2/L so that aγi ≈ 1/2. 4

6.2 Upper Bound on the Decoding Threshold
An upper bound on the decoding threshold for Cn(η,γ, τ ) can be given as follows, see [31,
Sec. VI-A]. Assume for a moment that all component codes can correct up to t erasures.
The best one can hope for in this case is that each component code corrects exactly t
erasures. That is, in total at most atn erasures can be corrected, where a is assumed
to be defined as in (D.51). Normalizing by the code length gives a maximum erasure
probability of p ≤ atn/m or, in terms of the effective channel quality c ≤ atn2/m. Using
(D.31) as n→∞, we obtain c ≤ 2t as a necessary condition for successful decoding. This
reasoning extends naturally also to the case where we allow for a mixture of erasure-
correcting capabilities. In this case, one finds that c ≤ 2t̄, where

t̄ =
L∑
i=1

γi

tmax∑
t=1

τt(i)t (D.52)

is the mean erasure-correcting capability. This bound is used for example as a reference
in the code optimization discussed in Section 7.

6.3 Modified Decoding Schedules
We now discuss decoding algorithms that differ from the one described in Section 2.3
and Section 5.3 in terms of scheduling. For example, for conventional PCs, one typically
iterates between the component decoders for the row and column codes. Another example
is the decoding of convolutional-like GPCs, such as the ones described in Examples 10
and 11. For these codes, L is typically assumed to be very large and it becomes customary
to employ a sliding-window decoder. Such a decoder does not require knowledge of the
entire received code array in order to start decoding. The decoder instead only operates
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on a subset of the array within a so-called window configuration. After a predetermined
number of iterations, this subset changes and the window “slides” to the next position.
More generally, assume that we wish to apply a different decoding schedule to Cn(η,γ, τ ).

To that end, let A(l) ⊆ [L] for l ∈ [`] be a subset of the L CN positions. We interpret
A(l) as active positions and the complementary set [L] \ A(l) as inactive positions in
iteration l. The decoding is modified as follows. In iteration l, one only executes the
BDD corresponding to CNs at active positions, i.e., positions that are contained in the
set A(l). CNs at inactive positions are assumed to be frozen, in the sense that they do
not contribute to the decoding process. In the peeling procedure, vertices at inactive
positions are simply ignored during iteration l.
In order to check if Theorem 3 remains valid for a modified decoding schedule, we adopt

the convention that frozen CNs continue to declare a decoding failure if they declared a
failure in the iteration in which they were last active. Moreover, we assume that each
CN position belongs to the set of active positions at least once during the decoding, i.e.,
we assume that

⋃`
l=1A(l) = [L] (otherwise Wk in Theorem 3 is not defined for CNs that

were never activated). Using these assumptions, it can be shown that Theorem 3 remains
valid. The only difference is that the corresponding DE equations now depend on the
schedule through

z
(`)
i =

{
RHS of (D.46) if i ∈ A(`)

z
(`−1)
i otherwise

, (D.53)

and

x
(`)
i =

{
RHS of (D.47) if i ∈ A(`)

x
(`−1)
i otherwise

. (D.54)

To see this first observe that in the proof of Theorem 3, the decoding schedule can be
handled by simply assuming an appropriately modified neighborhood function D̃`. In
particular, one may think about embedding the decoding schedule (A(l))l∈[`] into the
function D̃`. Observe that the scheduling does not change the fact that the decoding
outcome is isomorphism invariant, as long as the type of all vertices is preserved. Thus,
it remains to show that applying the modified decoding function D̃` to the branching
process X results in (D.53) and (D.54). Assuming that the root vertex is active in the
final iteration `, we can proceed as before. If, on the other hand, the root vertex is not
active in the final iteration `, we know that the survival probability is the same as it was
in the previous iteration. This gives (D.53) and applying the same reasoning for offspring
vertices gives (D.54).

6.4 Performance on the Binary Symmetric Channel
When assuming transmission over the binary symmetric channel (BSC) as opposed to the
BEC, the crucial difference is that there is a possibility that the component decoders may

D32



7 Irregular Half-Product Codes

miscorrect, in the sense that they introduce additional errors into the iterative decoding
process. This makes a rigorous analysis challenging.

One possible approach is to change the iterative decoder. In particular, consider again
the message-passing interpretation of the iterative decoding in Remark 3. In [31], the
authors propose to modify the decoder in order to make the corresponding message-
passing update rules extrinsic. In this case, miscorrections can be rigorously incorporated
into the asymptotic decoding analysis for GPC ensembles. The reason why this approach
works from a DE perspective is that for code ensembles, the entire computation graph
(for a fixed depth) of a CN in the Tanner graph becomes tree-like. In fact, this makes
it possible to analyze a variety of extrinsic message-passing decoders for a variety of
different channels [17], including the above modified iterative decoder for the BSC.

Unfortunately, this approach appears to be limited to code ensembles. Recall that
for the deterministic GPC construction Cn(η,γ, τ ), it is only the neighborhood in the
residual graph that becomes tree-like (not the entire computation graph). Therefore,
the independence assumption between messages is not necessarily satisfied, neither for
intrinsic nor extrinsic message-passing algorithms. In general, it is not obvious how
to rigorously incorporate miscorrections into an asymptotic analysis for a deterministic
GPC construction. Applying our results to the BSC thus requires a similar assumption
as in [9,11,19], i.e., either one assumes that miscorrections are negligible or that a genie
prevents them.

7 Irregular Half-Product Codes

In this section, we consider an application of the derived DE equations for deterministic
GPCs. In particular, we discuss the optimization of component code mixtures for HPCs.
Recall that for (regular) HPCs, we have η = 1, γ = 1, and all component codes associated
with the CNs have the same erasure-correcting capability t. Similar to irregular PCs [20,
21], an irregular HPC is obtained by assigning component codes with different erasure-
correcting capabilities to the CNs. In doing so, we hope to be able to achieve a better
performance under iterative decoding compared to regular HPCs. This is of course
completely analogous to to other irregular code constructions, e.g., irregular LDPC codes
[16].

7.1 Preliminaries

The assignment of erasure-correcting capabilities to the CNs is done according to the dis-
tribution τ = (τ1, . . . , τtmax)ᵀ. (For notational convenience, we suppress the dependence
of the distribution and other quantities on the position index in the Tanner graph.) The
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mean erasure-correcting capability (D.52) in this case is given by

t̄ =
tmax∑
t=1

τtt. (D.55)

The DE equation (D.47) simplifies to

x(`) =
tmax∑
t=1

τtΨ≥t(cx(`−1)), (D.56)

with x(0) = 1. The decoding threshold (D.48) can alternatively be written as

c∗ = sup{c > 0 | lim
`→∞

x(`) = 0}, (D.57)

since z(`) → 0 if and only if x(`) → 0 as ` → ∞. From (D.56) and the fact that Ψ≥t(x)
for any t ∈ N and x ≥ 0 is strictly increasing, we have that the condition

tmax∑
t=1

τtΨ≥t(cx) < x, for x ∈ (0, 1], (D.58)

implies successful decoding after a sufficiently large number of iterations, i.e., we have
that c∗ ≥ c.
We wish to design τ such that c∗ is as large as possible. Obviously, choosing com-

ponent codes with larger erasure-correcting capability gives better performance, i.e.,
larger thresholds. Thus, the design is done under the constraint that the mean erasure-
correcting capability t̄ remains fixed. This is the natural analogue to the rate-constraint
when designing degree distributions for irregular LDPC codes.

7.2 Lower Bounds on the Threshold
Before discussing the practical optimization of the distribution τ based on a linear pro-
gram in the next subsection, we show that one can construct irregular HPCs that have
thresholds

2t̄− 1 ≤ c∗ ≤ 2t̄, (D.59)

where we recall that the upper bound in (D.59) holds for any GPC according to the
discussion in Section 6.2. The lower bound in (D.59) is achieved by a uniform distribution.
In particular, from

∑∞
i=1 P (X ≥ i) = E [X], we have

∞∑
t=1

Ψ≥t(cx) = cx, (D.60)
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where we recall that Ψ≥t(cx) = P (Po(cx) ≥ t). If we then choose a uniform distribution
according to τt = 1/N for t ∈ [N ] (i.e., tmax = N), we have

N∑
t=1

τtΨ≥t(Nx) <
∞∑

t=1

1
N

Ψ≥t(Nx) = x for x > 0, (D.61)

where the (strict) inequality follows from the fact that Ψ≥t(x) > 0 for any t ∈ N and
x > 0. We see from (D.61) that the threshold for the uniform distribution satisfies
c∗ ≥ N (cf. (D.58)). Moreover, the average erasure-correcting capability is given by

t̄ =
N∑

t=1
τtt = 1

N

N(N + 1)
2 = N + 1

2 . (D.62)

Therefore, we have

2t̄− c∗ ≤ 2N + 1
2 −N = 1, (D.63)

or c∗ ≥ 2t̄ − 1. This simple lower bound shows that one can design irregular HPCs
that are within a constant gap of the upper 2t̄-bound. This is in contrast to regular
HPCs where t̄ = t. In this case, the difference between the threshold c∗ and 2t becomes
unbounded for large t, since c∗ = t +

√
t log t +O(log(t)) [34].

Remark 14. Essentially the same argument also allows us to give a lower bound on
the threshold for irregular HPCs when the minimum erasure-correcting capability is
constrained to some value tmin > 1. In that case, a uniform distribution over {tmin, tmin+
1, . . . , tmin + N − 1} still gives a threshold that satisfies c∗ ≥ N . However, we have
t̄ = (N + 2tmin − 1)/2. Hence, one obtains the lower bound c∗ ≥ 2t̄− 2tmin + 1.

7.3 Optimization via Linear Programming
The optimal distribution maximizes the threshold c∗ subject to a fixed mean erasure-
correcting capability t̄. Alternatively, one may fix a certain channel quality parameter c
and minimize t̄ as follows.

minimize
τ1,...,τtmax

t̄ =
tmax∑
t=1

τtt (D.64)

subject to
tmax∑
t=1

τt = 1, τ1, . . . , τtmax ≥ 0 (D.65)

tmax∑
t=1

τtΨ≥t(cx) < x, x ∈ (0, 1]. (D.66)

The objective function and all constraints in (D.64)–(D.66) are linear in τ1, . . . , τtmax .
Thus, after discretizing the constraint (D.66) according to x = i∆ for i ∈ [M ] and
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Figure 8: Decoding thresholds for optimized irregular and regular HPCs. Thresholds for ir-
regular HPCs are obtained via a discretized linear program with M = 1000 and
tmax = 50.

∆ = 1/M , one obtains a linear program, which can be efficiently solved by standard
numerical optimization solvers. In Fig. 8, we show the thresholds of the optimized
irregular HPCs by the red line, where we used M = 1000 and tmax = 50, as a function
of t̄. We also show the thresholds for regular HPCs (where t̄ = t = 2, 3, . . . ) and the
2t̄-bound by the blue and black lines, respectively. It can be seen that the thresholds for
regular HPCs diverge from the bound for large t̄, as expected. Using irregular HPCs,
the thresholds can be significantly improved for large t̄. However, there appears to be
an almost constant gap between the upper bound and the threshold curve. This gap is
investigated in more detail in the next subsection.
For practical applications, it is often desirable to limit the fraction of component codes

with “small” erasure-correcting capabilities in order to avoid harmful error floors [11]. It
is straightforward to incorporate a minimum erasure-correcting capability tmin into the
above linear program. For example, the green line in Fig. 8 shows the thresholds of the
optimized irregular HPCs when the minimum erasure-correcting capability is constrained
to tmin = 4. This additional constraint entails a threshold penalty which, however,
decreases for larger values of t̄.

7.4 Initial Component Code Loss
We now focus in more detail on the upper 2t̄-bound for the thresholds of irregular HPCs.
In particular, we show that it is possible to give a slightly improved upper bound based
on the notion of an initial component code loss. Based on this, it can be shown that the
upper bound in (D.59) is in fact strict, i.e., for any distribution τ with mean erasure-
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correcting capability t̄ and threshold c∗, the gap 2t̄ − c∗ is always bounded away from
zero. This gives an intuitive explanation for the gap between the threshold curve and
the 2t̄-bound observed in Fig. 8. A similar bound for irregular LDPC code ensembles
over the BEC is given in [50].

Recall that the upper bound has been derived in Section 6.2 under the (somewhat
optimistic) assumption that each t-erasure correcting component code corrects exactly t
erasures. In other words, each component code is assumed to contribute its maximum
erasure-correcting potential to the overall decoding. A refined version of this argument
takes into account the fact that a certain amount of erasure-correcting potential is lost
almost surely before the iterative decoding process even begins. In particular, let the RVs
Ni,t, for i = 0, 1 . . . , t − 1, be the number of CNs corresponding to t-erasure-correcting
component codes that are initially connected to i < t erased VNs. In the first decoding
iteration, each of these CNs corrects only i erasures instead of t, i.e., the maximum
number of erasures E that we can hope to correct is upper bounded by

E ≤ t̄n−
tmax∑
t=1

t−1∑
i=0

Ni,t(t− i). (D.67)

Since E/n andNi,t/n converge almost surely to the deterministic values c/2 and τtΨ=i(c),
respectively, we obtain

c ≤ 2t̄− 2Lτ (c) (D.68)

as a necessary condition for successful decoding, where we implicitly defined the initial
component code loss for the distribution τ as

Lτ (c) ,
tmax∑
t=1

τtL(t, c) (D.69)

with

L(t, c) ,
t−1∑
i=0

Ψ=i(c)(t− i) (D.70)

for c > 0 and t ∈ N.
Remark 15. The affine extension of L(t, c) for a fixed c ≥ 0 is convex in t ∈ [1;∞) in the
sense that for any c ≥ 0 and t = 2, 3, . . . , we have

L(t− 1, c) + L(t + 1, c) = 2L(t, c) + Ψ=t(c) (D.71)
≥ 2L(t, c). (D.72)

This implies that for any distribution τ with average erasure-correcting capability t̄, the
associated initial component code loss satisfies

Lτ (c) ≥ L(b̄tc, c), (D.73)

i.e., the initial loss is minimized for regular HPCs.
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The bound (D.68) has a natural interpretation in terms of areas related to the curves
involved in the condition (D.58), similar to the area theorem for irregular LDPC code
ensembles. Indeed, an alternative way to show that successful decoding implies (D.68) is
by integrating the condition (D.58). Using integration by parts, one obtains the indefinite
integral [51] ∫

Ψ≥t(x) dx = xΨ≥t(x) + tΨ≤t(x). (D.74)

Thus, we have

c

∫ 1

0
Ψ≥t(cx) dx = cΨ≥t(c) + tΨ≤t(c)− t (D.75)

= c(1−Ψ<t(c)) + tΨ≤t(c)− t (D.76)
= c− t + L(t, c), (D.77)

where the last equality follows from

tΨ≤t(c)− cΨ<t(c) = tΨ≤t(c)− c
t−1∑
k=0

ck

k! e
−c (D.78)

= tΨ≤t(c)− c
t∑

k=1

ck−1

(k − 1)!e
−c (D.79)

= tΨ≤t(c)−
t∑

k=0

ck

k! e
−ck (D.80)

=
t∑

k=0
Ψ=k(c)(t− k) (D.81)

= L(t, c). (D.82)

Hence, integrating both sides of (D.58) from zero to one and using (D.77), one obtains

1
c

tmax∑
t=1

τt (c− t + L(t, c)) < 1
2 , (D.83)

or, equivalently, (D.68).
A visualization is shown in Fig. 9, where the red and black lines correspond to the left-

hand side (LHS) and RHS of (D.58), respectively. The area below the red curve up to
x = 1 (shown in red) corresponds to the LHS of (D.83). Similarly, it can be shown using
(D.74) that the area between the red line and x = 1 (shown in blue) corresponds to the
scaled erasure-correcting capability t̄/c. Note that the 2t̄-bound on the threshold simply
corresponds to the fact that the blue area cannot be smaller than 1/2, since otherwise
the red and black lines would have to cross. From the previous discussion, we have seen
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Figure 9: Graphical interpretation of the upper threshold bounds.
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Figure 10: Gap between the threshold c∗ and the 2t̄-bound for the optimized irregular HPCs.

that the gap to the upper 2t̄-bound is partially due to the initial component code loss.
In particular, by combining the blue and red areas, it can be seen that the hatched area
in Fig. 9 corresponds precisely to the (scaled) loss Lτ (c)/c.

Consider now again the outcome of the linear program for the optimized irregular HPCs
in Fig. 8. In Fig. 10, the (vertical) gap 2t̄− c∗ between the black and red lines in Fig. 8
is shown for a larger range of t̄. It can be seen that the gap is decreasing with t̄, albeit
rather slowly. We also plot the initial component code loss for the optimized distributions
at the threshold value by the blue line. From this, we see that the initial component
code loss accounts for approximately half of the threshold gap for the optimized irregular
distributions.
Remark 16. In fact, we conjecture that the following is true. Assume c ∈ N. Then, for
any distribution τ with threshold c∗ ≥ c and mean erasure-correcting capability t̄, we
have

t̄ ≥ c

2 + 1
c

c∑
t=1
L(t, c). (D.84)
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This bound is shown in Fig. 10 by the dashed line, although we failed to prove it. Proving
(D.84) would be interesting, since one can show that limc→∞ 1

c

∑c
t=1 L(t, c) = 1/4 and

hence 2t̄− c∗ ≥ 1/2, which seems to be the constant to which the optimization outcome
is converging for t̄→∞.

7.5 Simulation Results
In order to illustrate how the thresholds can be used to design practical irregular HPCs,
we consider (shortened) binary BCH codes as component codes. Given the Galois-field
extension degree ν, a shortening parameter s, and the erasure-correcting capability t, we
let the component code be an (n, kC , dmin) BCH code, where n = 2ν−1−s, dmin = t+1,
and

kC =
{
n− νt/2, t even
n− ν(t− 1)/2− 1, t odd

. (D.85)

In the following, we consider two irregular HPCs, where t̄ ≈ 7. As a comparison, we use
a regular HPC with τ7 = 1 for which c∗ ≈ 11.34. The optimal distribution (rounded to
three decimal places) according to the linear program (D.64)–(D.66) is given by

τ1 = 0.070, τ2 = 0.103, τ4 = 0.115,
τ5 = 0.179, τ10 = 0.496, τ11 = 0.037,

(D.86)

which yields c∗ ≈ 13.42. We also consider the case where the minimum erasure-correcting
capability is constrained to be tmin = 4. For this case, one obtains

τ4 = 0.495, τ9 = 0.029, τ10 = 0.476, (D.87)

and the threshold is reduced to c∗ ≈ 12.88.
For the simulations, we consider two different component code lengths, n = 1000 (i.e.,

ν = 10 and s = 23) and n = 3000 (i.e., ν = 12 and s = 1095), leading to an overall length
of the HPCs ofm ≈ 500, 000 andm ≈ 4, 500, 000, respectively. If we denote the dimension
of the k-th component code by kCk , the code rate is lower bounded by [7, Sec. 5.2.1]

R ≥ 1−
∑n
k=1(n− kCk)

m
. (D.88)

For the regular case and the distributions (D.86) and (D.87), the lower bound evaluates
to approximately 0.93 and 0.97 for n = 1000 and n = 3000, respectively. (In order
to obtain shorter (longer) codes for the same rate, one needs to reduce (increase) t̄.)
Although the chosen values for n are merely for illustration purposes, we remark that
the delay caused by such seemingly long block-lengths is typically not a problem for
high-speed applications. For example, the delay for the GPCs designed for fiber-optical
communication systems in [8, 13] is in the order of 2, 000, 000 bits.
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Figure 11: Simulation results (dashed lines) for regular and optimized irregular HPCs for two
different values of n and ` = 100. DE results (solid lines) are shown for ` = 100.

Simulation results are shown in Fig. 11 by the dashed lines. In all cases, the maximum
number of decoding iterations is restricted to ` = 100. Results for regular HPCs are
shown in red, while results for the irregular HPCs defined by the optimized distributions
(D.86) and (D.87) are shown in green and blue, respectively. For lower error rates,
the irregular HPCs defined by (D.86) are clearly outperformed by regular HPCs and
HPCs defined by the distribution (D.87). This is due to the relatively large fraction of
component codes that only correct 1 and 2 erasures, which leads to a large error floor.

It is interesting to inspect the DE predictions for ` = 100, which are shown by the
solid lines in Fig. 11. The predicted performance for the regular and irregular distribution
(D.87) drops sharply, while the predicted performance for the distribution (D.86) shows a
markedly different behavior due to the finite iteration number. It is therefore important
to stress that an optimization via the condition (D.58) implicitly assumes an unrestricted
number of decoding iterations. (As a reference, the DE prediction for the distribution
(D.86) with ` = 1000 is shown by the green dotted line.) Thus, if we had done an
optimization based on DE assuming ` = 100 and targeting an error rate of around 10−7

in Fig. 11, we would have rejected the distribution (D.86) in favor of the distribution
(D.87) right away. However, it is not obvious if such an optimization admits a formulation
in terms of a linear program, and therefore it would very likely have to be based on a
heuristic optimization procedure.

Lastly, the HPCs defined by (D.87) have a comparable finite-length scaling behavior
below the threshold and no noticeable error-floor for the simulated error rates. As a
consequence, the performance gains for this distribution over the regular HPCs predicted
by DE are well preserved also for finite lengths.
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8 Conclusions and Future Work

In this paper, we studied the performance of deterministically constructed GPCs un-
der iterative decoding. Using the framework of sparse inhomogeneous random graphs,
we showed how to derive the DE equations that govern the asymptotic behavior. In
principle, DE can be used for a variety of different applications, e.g., parameter tun-
ing, optimization of decoding schedules, or the design of new GPCs. Here, we used the
derived DE equations to optimize irregular HPCs that employ a mixture of component
codes with different erasure-correcting capabilities. Using an approach based on linear
programming, we obtained irregular HPCs that outperform regular HPCs.
For future work, it would be interesting to analyze deterministic code constructions

that incorporate VNs with larger degrees. Larger VN degrees are easily incorporated
into an ensemble approach, see, e.g., [33]. An example of a corresponding deterministic
code construction is the case where code arrays are generalized from two to three (or
higher) dimensional objects, e.g., a cube-shaped code array. In that case, the residual
graph could be modeled as a random hypergraph. Cores in random hypergraphs have
for example been studied in [52].

A Proof of Lemma 1

First, we upper-bound the probability that the degree Dk of the k-th vertex exceeds dn
using the Chernoff bound. Let θ ∼ B(c/n), then, for any λ > 0, we have

P (Dk ≥ dn) = P
(
eλDk ≥ eλdn

)
(D.89)

≤ e−λdnE
[
eλDk

]
(D.90)

= e−λdnE
[
eλ(θk,1+···+θk,n)

]
(D.91)

= e−λdn
(
E
[
eλθ
])n−1 (D.92)

= e−λdn(1− p+ peλ)n−1 (D.93)

≤ e−λdn
(

1 + c

n

(
eλ − 1

))n
(D.94)

≤ e−λdnec(eλ−1) (D.95)

≤ e−c−dn ln dn
ce (D.96)

where (D.90) follows from applying Markov’s inequality, (D.92) holds because all θk,j ∼ θ
are independent except θk,k = 0, (D.95) stems from (1+x/n)n ≤ ex for x ≥ 0, and (D.96)
follows from minimizing over λ. Thus, for dn = Ω(log(n)) and any β > 0, there is an n0
such that P (Dk ≥ dn) ≤ e−βdn . Hence, if one chooses β large enough, then the union
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bound implies

P (Dmax ≥ dn) ≤ nP (Dk ≥ dn) (D.97)
≤ ne−βdn (D.98)
= elog(n)−βdn (D.99)
= e−β(dn−log(n)/β) (D.100)
≤ e−βdn/2 (D.101)

for all n ≥ n0.

B Bound on the Second Moment of T`

To obtain a bound on E[T 2
` ], we first show how to compute the corresponding quantity

E[T̄ 2
` ] for a branching process. The final expression is a function of the mean µξ̄ and

variance σ2
ξ̄
of the offspring distribution ξ̄.

First, from T̄` = Z̄0 + Z̄1 + . . . Z̄`, we obtain

E[T̄ 2
` ] =

∑̀
i=0

E[Z̄2
i ] + 2

∑̀
i=1

i−1∑
j=0

E[Z̄iZ̄j ]. (D.102)

Using the definition of Z̄i and the law of total expectation, it can be shown that for i > j,
we have

E[Z̄iZ̄j ] = µi−j
ξ̄

E[Z̄2
j ]. (D.103)

Inserting (D.103) into (D.102) leads to

E[T̄ 2
` ] =

∑̀
i=0

E[Z̄2
i ] + 2

∑̀
i=1

i−1∑
j=0

µi−j
ξ̄

E[Z̄2
j ]. (D.104)

Next, we can use the well-known expressions for the mean and variance of Z̄i (see,
e.g., [42, p. 396]) to obtain

E[Z̄2
` ] =

σ2
ξ̄
µ`−1
ξ̄

µ`
ξ̄
−1

µξ̄−1 + µ2`
ξ̄
, µξ̄ 6= 1

`σ2
ξ̄

+ 1, µξ̄ = 1
. (D.105)

Inserting (D.105) into (D.104) leads to the desired explicit characterization of E[T̄ 2
` ]. Of

particular interest here is the case where the offspring distribution is Poisson with mean
c. In this case, we have µξ̄ = c and σ2

ξ̄
= c, which leads to

E[T̄ 2
` ] =

{
c2`+3−1−(2`+3)c`(c−1)

(c−1)3 , c 6= 1
(`+1)(`+2)(2`+3)

6 , c = 1
. (D.106)
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Finally, using the same steps as in the proof of [41, Th. 4.2] and [41, Th. 3.20] one can
show that (D.106) is an upper bound on E[T 2

` ], i.e., we have E[T 2
` ] ≤ E[T̄ 2

` ].
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1 Introduction

Abstract

We analyze deterministically constructed (i.e., non-ensemble-based)
codes in the waterfall and error floor region. The analysis directly
applies to several FEC classes proposed for high-speed OTNs such as
staircase and braided codes.

1 Introduction
Several authors have proposed improvements over the forward error correction (FEC)
codes for optical transport networks (OTNs) from the ITU-T G.975 and G.975.1 recom-
mendations. Some of these proposals, e.g., staircase codes (SCs) [1] and braided codes
(BCs) [2], are extensions of classical product codes (PCs) and we refer to them as general-
ized PCs (GPCs). GPCs are particularly suited for high-speed applications due to their
lower complexity under iterative hard-decision decoding compared to message-passing
decoding of low-density parity-check (LDPC) codes [1].

FEC design requires assessment of nontrivial trade-offs between performance, com-
plexity, and decoding delay. Identifying these trade-offs is greatly simplified with the
availability of theoretical tools that allow the prediction of the post-FEC bit error rate
(BER) performance without resorting to time-consuming Monte-Carlo simulations. In
this paper, we propose a deterministic GPC construction which encompasses PCs, stair-
case codes (SCs), and (block-wise) BCs as special cases. The main contribution is a
characterization of the performance under iterative decoding in the waterfall region by
means of a density evolution (DE) analysis. Our work generalizes previous work in [3,4]
to a large class of GPCs. Even though other classes of GPCs are also discussed in [4], the
DE analysis in these papers is limited to PCs and their symmetric subcodes (so-called
half-PCs).

As an application, we present a case study comparing SCs and two variants of BCs.
Supplemented with an error floor analysis, we show that the symmetric subcode of a BC
can outperform both SCs and conventional BCs in the waterfall region, at a lower error
floor and decoding delay.

2 Density Evolution for Deterministic GPCs
We denote a GPC by Cn(η), where n is the number of constraint nodes (CNs) in the
underlying Tanner graph and η is a binary, symmetric L×Lmatrix that defines the graph
connectivity. Since GPCs have a natural representation in terms of two-dimensional code
arrays (see, e.g., Fig. 1), one may alternatively think about η as specifying the array
shape. We will see in the following that different choices for η recover well-known code
classes.
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2.1 Code Construction
To construct the Tanner graph that defines Cn(η), assume that there are L positions.
Then, place d , n/L CNs at each position and connect each CN at position i to each
CN at position j through a variable node (VN) if and only if ηi,j = 1.
Example: A PC is obtained for L = 2 and η = ( 0 1

1 0 ). The two positions correspond to
“row” and “column” codes, respectively. The code array is of size d× d, where d = n/2.
Each of the d2 VNs corresponds to one bit in the array. 4
CNs at position i have degree d

∑
j 6=i ηi,j + ηi,i(d − 1), where the second term arises

from the fact that we cannot connect a CN to itself if ηi,i = 1. Recall that the CN degree
specifies the length of the component code associated with the CN. Here we assume that
each CN corresponds to a t-error correcting Bose–Chaudhuri–Hocquenghem (BCH) code.

2.2 Iterative Decoding
Suppose that a codeword of Cn(η) is transmitted over a binary symmetric channel with
crossover probability p. The decoding is performed iteratively assuming ` iterations ac-
cording to the following procedure. In each iteration, perform bounded-distance decoding
(BDD) of all component codes and update the bits of the associated VNs according to
the decoding outcome. For simplicity, we consider idealized BDD similar to [3,4], which
works as follows. If the Hamming weight of the error pattern is less or equal to t, the
pattern is corrected. If the weight exceeds t, the component code declares an error but
leaves all associated bits unchanged.

2.3 Density Evolution
We wish to characterize the asymptotic decoding performance in the limit n → ∞. To
that end, let Ψ≥t(λ) , 1 − e−λ

∑t−1
i=0

λi

i! be the tail probability of a Poisson random
variable, p = c/n for some c > 0, and assume that we compute

z
(`)
i = Ψ≥t+1

 c

L

L∑
j=1

ηi,jx
(`−1)
j

 , where x
(`)
i = Ψ≥t

 c

L

L∑
j=1

ηi,jx
(`−1)
j

 (E.1)

for i ∈ {1, · · · , L} with x
(0)
i = 1. The main technical result is as follows. Let the

random variable Z be the fraction of component codes that declare errors in iteration
`. Then, Z converges almost surely to 1

L

∑L
i=1 z

(`)
i as n→∞. In other words, the code

performance concentrates around a deterministic value computed by the recursion in
(E.1) for sufficiently large n. This result is analogous to the DE analysis for LDPC codes
and for a formal proof we refer the reader to [5]. Observe that this result applies to the
deterministically constructed code Cn(η) and does not rely on the definition of a code
ensemble (i.e., a set of codes), which is typically required to apply DE. We remark that
the analysis can be modified to account for different decoding schedules, e.g., alternations
between “rows” and “columns” or window decoders (or a combination thereof), see [5].
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3 Case Study: Comparison of Staircase, Braided, and Half-Braided Codes
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Figure 1: Code arrays using the same component code with length nc = 12 and dimension
kc = 10.

The above result is asymptotic in n. In practice, n is typically “large enough” and d =
n/L exceeds several hundreds of bits. We can then use (E.1) to predict the region where
the post-FEC BER curve of Cn(η) bends into the characteristic waterfall behavior by
using BER ≈ pxηxT /‖η‖2F , where ‖η‖2F is the number of 1s in η and x , (x(`)

1 , . . . , x
(`)
L ).

3 Case Study: Comparison of Staircase, Braided, and
Half-Braided Codes

Consider the code arrays in Fig. 1, where (a) corresponds to a SC [1], (b) to a variant
of a block-wise BC [6], and (c) to a half-BC [4, 7]. The definition of these codes is
usually easiest to understand in terms of their systematic encoding procedure. For the
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SC and BC, the red array elements are filled with information bits and the blue array
elements are the parity bits obtained by systematically encoding rows and/or columns.
The procedure is essentially the same for the half-BC, however, each component code acts
on an L-shape, i.e., both a partial row and column, which includes the zero on the array
diagonal. Equivalently, one can encode the BC with a zero diagonal and symmetrically
placed information bits with respect to the diagonal. Thus, the half-BC code can be
viewed as a (punctured) subcode of the BC.
By considering the Tanner graph of all three codes, one may check that they can be

seen as special cases of Cn(η). In particular, the SC is recovered for ηi,i+1 = ηi+1,i = 1
for i ∈ {1, . . . , L − 1} and zeros elsewhere. The BC has the same η, but additionally
η2i−1,2i+2 = η2i+2,2i−1 = 1 for i ∈ {1, . . . , L/2 − 1}. The half-BC has the same η as
the SC, but additionally ηi,i = 1 for i ∈ {1, . . . , L}. The numbers in Fig. 1 indicate the
positions in the construction in Sec. 2.1.

3.1 Parameters and Error Floor

We use a BCH component code with parameters (nc, kc, t) = (720, 690, 3), where nc and
kc are the length and dimension of the code. All other parameters are listed in Table
1 and briefly discussed in the following. Encoding is performed in batches, where one
batch is indicated by the thick, red lines in Fig. 1, and B denotes the number of bits per
batch. The code rate R is the ratio between the number of information bits per batch
and B. All three codes have roughly the same rate R ≈ 0.917 (and an FEC overhead
of 9.1%). The decoding is performed in a sliding-window fashion, where each window
comprises W received batches. The decoding delay (in bits) is given by D = WB and
we have chosen W such that the SC and BC have the same delay, which is roughly twice
as much as for the half-BC. The SC and BC are decoded by iterating ` times between
rows and columns within each window. For the half-BC, all component codes within
each window are decoded simultaneously and ` is increased to keep the same decoding
complexity (note that the number of component codes per window is reduced by half for
half-BCs).
To estimate the error floor, we follow the analysis and terminology in [1, Sec. V-B].

Let smin be the size of the minimal stall pattern, defined as the minimum number of
array positions which, when all received in error, cause the decoder to stall. Examples
are shown by the crosses in Fig. 1 for t = 2. A stall pattern is said to be assigned to a
batch if at least one of its array positions belongs to the batch and no positions belong
to previous batches. The error floor is approximated by BER ≈ sminMpsmin/B, where
M denotes the number of minimal stall patterns that can be assigned to a batch. For
SCs, M is derived in [1, Sec. V-B]. We use similar arguments to derive M for BCs and
half-BCs listed in Table 1.
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3 Case Study: Comparison of Staircase, Braided, and Half-Braided Codes

staircase braided half-braided

B a2 = n2
c

4 3b2 = n2
c

3
3b2−b

2 = n2
c−nc

6

R
2 kcnc − 1 2 kcnc − 1 2 kc−1

nc−1 − 1
= 0.9167 = 0.9167 = 0.9166

W / ` 8 / 8 6 / 8 6 / 16

D 1, 036, 800 1, 036, 800 517, 680

dec. row/column row/column all at once

smin (t + 1)2 = 16 (t + 1)2 = 16 (t+1)(t+2)
2 = 10

M
(
a

t+1
) (( 2a

t+1
)
−
(
a

t+1
))

*
( 2b

t+2
)
−
(
b

t+2
)

*
(( 2b

t+1
)
−
(
b

t+1
))2

+ 2
(
b

t+1
) (( 3b

t+1
)
−
( 2b

t+1
))

Table 1: Parameters

3.2 Results and Discussion

Results are shown in Fig. 2 for the SC (red), BC (blue), and half-BC (green). DE
shows a slight (asymptotic) performance advantage for the SC, although for the chosen
parameters at finite lengths, the SC and BC perform virtually identical. The DE results
for the BC and half-BC are roughly the same (this can be seen by considering (E.1) and
η for the two codes). The simulated half-BC has worse performance compared to the
SC and BC caused by a different scaling behavior at finite lengths due to the reduced
number of bits within the decoding window. Furthermore, the error floor is increased
from ≈ 10−20 for the SC and BC to ≈ 10−14 due to the reduction of smin. On the
other hand, the half-BC operates at only half the decoding delay. One may therefore
improve the half-BC by employing a longer BCH code with parameters (960, 920, 4). This
leaves the code rate unchanged, but significantly reduces the error floor to ≈ 10−23 (note
that smin = 15) and also improves the waterfall performance, as predicted by DE and
confirmed by the simulations (shown in brown). The delay is increased to D = 920, 640
bits, which is slightly less compared to the SC and BC.

Since the error floors were beyond the reach of software simulations, the inlet figure
shows additional results for a half-BC employing a (600, 580, 2)-BCH code, W = 5, and
` = 10 to verify the analysis based on minimal stall patterns.
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Figure 2: Results

4 Conclusion
We presented a DE analysis for deterministic GPCs, which applies to several code classes
proposed for optical communications. DE can be used for a variety of different applica-
tions, e.g., parameter tuning, optimization of decoding schedules, or the design of new
GPCs. As a case study, we compared SCs, BCs, and half-BCs. SCs and BCs perform
similarly, while half-BCs can outperform both SCs and BCs at a lower error floor and
decoding delay.
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1 Introduction

Abstract

Several authors have proposed spatially-coupled (or convolutional-
like) variants of product codes (PCs). In this paper, we focus on a
parametrized family of generalized PCs that recovers some of these
codes (e.g., staircase and block-wise braided codes) as special cases
and study the iterative decoding performance over the binary erasure
channel. Even though our code construction is deterministic (and not
based on a randomized ensemble), we show that it is still possible to
rigorously derive the density evolution (DE) equations that govern the
asymptotic performance. The obtained DE equations are then com-
pared to those for a related spatially-coupled PC ensemble. In particu-
lar, we show that there exists a family of (deterministic) braided codes
that follows the same DE equation as the ensemble, for any spatial
length and coupling width.

1 Introduction
Several authors have proposed modifications of the classical product code (PC) construc-
tion by Elias [1], typically by considering nonrectangular code arrays. These modifica-
tions can be regarded as generalized low-density parity-check (LDPC) codes [2], where the
underlying Tanner graph consists exclusively of degree-2 variable nodes (VNs). We refer
to such codes as generalized PCs (GPCs). For example, GPCs have been investigated by
many authors as practical solutions for high-speed fiber-optical communications [3–7].

For the binary erasure channel (BEC), we are interested in the asymptotic iterative
decoding performance of GPCs whose associated code arrays have a spatially-coupled or
convolutional-like structure. Examples include braided codes [5,8] and staircase codes [4].
Spatially-coupled codes have attracted significant attention in the literature due to their
outstanding performance under iterative decoding [9, 10].

An asymptotic analysis is typically based on density evolution (DE) [11, 12] using
an ensemble argument. This approach was taken for spatially-coupled PCs in [13, 14].
However, a randomly chosen code from these ensembles is unlikely to have a product array
(row-column) structure and hence does not resemble the codes that are implemented in
practice, e.g., staircase or braided codes. It is thus desirable to make precise statements
about the performance of sequences of deterministic (and structured) GPCs.

We consider the high-rate regime, where one assumes that component codes correct a
fixed number of erasures and then studies the case where the component code length n
tends to infinity. Using a Chernoff bound, one finds that for any fixed erasure probability
p, the decoding will fail for large n with high probability. Therefore, it is customary to
let the erasure probability decay slowly as c/n for some c > 0. This leads to rigorous
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decoding thresholds in terms of c which may be interpreted as the effective channel
quality. The high-rate regime is also the regime that is relevant in practice: It is at
high rates where GPCs are competitive compared to LDPC codes and practical GPCs
typically employ long component codes with small erasure-correcting capability [3–5].
The main contribution of this paper is to show that, analogous to DE for code ensem-

bles, there exists a large class of deterministic GPCs whose asymptotic performance in
the high-rate regime is rigorously characterized in terms of a recursive DE equation. The
code construction we propose here is sufficiently general to recover (block-wise) braided
and staircase codes as special cases. Our result generalizes previous work in [3] from
conventional PCs to a large class of deterministic GPCs. We further provide a detailed
comparison between deterministic spatially-coupled PCs and the ensembles in [13, 14]
via their respective DE equations. For example, we show that there exists a family of
block-wise braided codes that follows the same DE recursion as the ensemble in [13].
This implies that certain ensemble-properties proved in [13] also apply to deterministic
GPCs.
Notation. We use boldface letters to denote vectors and matrices (e.g., x and A).

The symbols 0m and 1m denote the all-zero and all-one vectors of length m, where the
subscript may be omitted. The tail-probability of a Poisson random variable is defined
as Ψ≥t(x) , 1 −∑t−1

i=0 Ψ=i(x), where Ψ=i(x) , xi

i! e
−x. We use boldface to denote the

element-wise application of a scalar-valued function to a vector, e.g., Ψ≥t(x) applies
Ψ≥t( · ) to each element in x. For vectors, we use x � y if xi ≥ yi for all i. We define
[m] , {1, 2, . . . ,m}. The indicator function is denoted by 1 { · }.

2 Code Construction and Density Evolution for
Deterministic Generalized Product Codes

We denote a GPC by Cn(η), where n is proportional to the number of constraint nodes
(CNs) in the underlying Tanner graph and η is a binary, symmetric L × L matrix that
defines the graph connectivity. Recall that GPCs also have a natural array representation:
The code Cn(η) can alternatively be defined as the set of all code arrays of a given shape
(see Fig. 1 for examples) such that each row and column is a codeword in some component
code. Thus, one may alternatively think about η as specifying the array shape. We will
see in the following that different choices for η recover well-known code classes.

2.1 Code Construction
Let γ > 0 be some fixed and arbitrary constant such that d , γn is an integer. To
construct the Tanner graph that defines Cn(η), assume that there are L positions. Then,
place d CNs at each position and connect each CN at position i to each CN at position
j through a VN if and only if ηi,j = 1.
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2 Code Construction and Density Evolution for Deterministic Generalized Product
Codes

Example 1. A PC is obtained by choosing L = 2 and η = ( 0 1
1 0 ). The two positions

correspond to “row” and “column” codes. If we choose γ = 1, then the code array is of
size n× n. 4
For a fixed n, the constant γ scales the number of CNs in the graph. This is incon-

sequential for the asymptotic analysis (where n → ∞) and γ manifests itself in the DE
equations merely as a scaling parameter. Its choice will become clear once we discuss the
comparison of codes defined by different η-matrices in Sec. 3.1.
CNs at position i have degree d

∑
j 6=i ηi,j + ηi,i(d − 1), where the second term arises

from the fact that we cannot connect a CN to itself if ηi,i = 1. The CN degree specifies
the length of the component code associated with the CN. We assume that each CN
corresponds to a t-erasure correcting component code. This assumption is relaxed in
Sec. 5.

2.2 Iterative Decoding
Suppose that a codeword of Cn(η) is transmitted over the BEC1 with erasure probability
p = c/n for c > 0. The decoding is performed iteratively assuming ` iterations of
bounded-distance decoding for the component codes associated with all CNs. Thus, in
each iteration, if the weight of an erasure pattern for a CN is less than or equal to t, the
pattern is corrected. If the weight exceeds t, we say that the component code declares a
decoding failure in that iteration.

2.3 Density Evolution
We wish to characterize the decoding performance in the limit n → ∞. To that end,
assume that we compute

z(`) = Ψ≥t+1(cBx(`−1)),with x(`) = Ψ≥t(cBx(`−1)), (F.1)

where x(0) = 1L and B , γη. The main result is as follows.

Theorem 1. Let the random variable W be the fraction of component codes that declare
decoding failures in iteration `. Then, W converges almost surely to 1

L

∑L
i=1 z

(`)
i as

n→∞.

Proof (Outline). The decoding can be represented by applying a peeling algorithm to
the residual graph which is obtained from the Tanner graph by deleting known VNs
and collapsing erased VNs into edges [3, 5, 14]. Our code construction is such that the
residual graph corresponds to an inhomogeneous random graph [15]. The expected value
of a suitably defined function applied to such a graph converges to the expected value
1In practice, GPCs are used to correct errors and not erasures. However, the (rigorous) analysis over
the BEC can be used to closely approximate the performance also over the binary symmetric channel,
see, e.g., [3].
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Figure 1: Code arrays for C12(η), where in (a) γ = 1/2 and in (b) γ = 1/3. Numbers indicate
the position indices in the code construction.

of the same function applied to a multi-type Poisson branching process [15]. One can
show that the peeling constitutes a valid function and that 1

L

∑L
i=1 z

(`)
i corresponds to

its expected value on the branching process. Concentration is established by applying
the method of typical bounded differences [16]. For a complete proof we refer the reader
to [17].

Th. 1 is analogous to the DE analysis for LDPC codes [12, Th. 2]. For notational
convenience, we define h(x) , Ψ≥t(cx), so that the recursion in (F.1) can be written as

x(`) = h(Bx(`−1)). (F.2)

Definition 1. The decoding threshold is defined to be

c̄ , sup{c ≥ 0 |x(∞) = 0L}. (F.3)

3 Spatially-Coupled Product Codes

3.1 Deterministic Spatially-Coupled Product Codes
We are interested in cases where η (and hence B) has a band-diagonal “convolutional-
like” structure. The associated code can then be classified as a spatially-coupled PC.
Example 2. For L ≥ 2, the matrix η describing a staircase code [4] has entries ηi,i+1 =
ηi+1,i = 1 for i ∈ [L− 1] and zeros elsewhere. The corresponding code array is shown in
Fig. 1(a), where L = 6, n = 12, and γ = 1/2. 4
Example 3. For even L ≥ 4, let ηi,i+1 = ηi+1,i = 1 for i ∈ [L−1], η2i−1,2i+2 = η2i+2,2i−1 =
1 for i ∈ [L/2 − 1], and zeros elsewhere. The resulting matrix η describes a particular
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3 Spatially-Coupled Product Codes

instance of a block-wise braided code2 [8]. The code array is shown in Fig. 1(b), where
L = 8, n = 12, and γ = 1/3. 4

The threshold c̄ in Def. 1 is a function of η and the scaling parameter γ. A rea-
sonable scaling to compare different spatially-coupled PCs is to choose γ such that
limL→∞ 1

L

∑L
i=1
∑L
j=1Bi,j = 1. For example, γ = 1/2 and γ = 1/3 for staircase and

braided codes, respectively. This ensures that in both cases the component codes have
length n, except at the array boundaries, see Fig. 1. The matrix B is then referred to
as an averaging matrix.

3.2 Spatially-Coupled Product Code Ensembles
We wish to compare the obtained DE recursion in (F.2) to the DE recursion for the
spatially-coupled PC ensemble defined in [13]. We review the necessary background in
this section.

Let B be a t-erasure correcting component code of length n. The Tanner graph corre-
sponding to one particular code in the spatially-coupled (B,m,L,w) ensemble, where L
and w are referred to as the spatial length and coupling width, respectively, is constructed
as follows (cf. [13, Def. 2]). Place m degree-n CNs corresponding to B at each position
i ∈ [L] and place mn/2 degree-2 VNs at each position i ∈ [L′], where L′ , L−w+1. The
mn VN and CN sockets at each position are partitioned into w groups of mn/w sockets
via a uniform random permutation. Let S(v)

i,j and S(c)
i,j be, respectively, the j-th group

for the VNs and CNs at position i, where j ∈ [w]. The Tanner graph is constructed by
connecting S(v)

i,j to S(c)
i+j,w−j+1.

The ensemble-averaged performance for m → ∞ is studied in [13]. Without going
into the details, the obtained DE recursion in the high-rate regime (where, additionally,
n→∞ and p = c/n) is given by [13, eq. (9)]

x̃(`) = cAΨ≥t(Aᵀx̃(`−1)), (F.4)

where x̃(0) = c1L′ and A is an L′ × L matrix with entries

Ai,j = w−1
1 {1 ≤ j − i+ 1 ≤ w} , for i ∈ [L′], j ∈ [L]. (F.5)

Remark 1. In [14], a modified spatially-coupled PC ensemble is considered. The obtained
DE recursion is [14, eq. (4), v = 2]

y(`) = cAᵀAΨ≥t(y(`−1)), (F.6)

which is identical to (F.4) choosing x̃(`) = cAΨ≥t(y(`)).
2We are somewhat liberal in our interpretation of the definition in [8] which is based on multiple block
permutators. In [8], these permutators are linked to the dimension of the component code, which turns
out to be unnecessarily narrow for our purposes.

F7



Paper F

Observe that (F.4) exhibits a double averaging due to the randomized edge connections
for both VNs and CNs at each position. Using the substitution x(`) = Ψ≥t(Ax̃(`−1))
with x̃(`) = cAΨ≥t(x(`)), the recursion becomes

x(`) = Ψ≥t(cB̃x(`−1)) = h(B̃x(`−1)), (F.7)

where x(0) = 1L and B̃ , AᵀA is a symmetric L×L matrix. For L = 6, the B̃-matrices
for w = 2 and w = 3 are, respectively, given by

1
4



1 1 0 0 0 0
1 2 1 0 0 0
0 1 2 1 0 0
0 0 1 2 1 0
0 0 0 1 2 1
0 0 0 0 1 1


,

1
9



1 1 1 0 0 0
1 2 2 1 0 0
1 2 3 2 1 0
0 1 2 3 2 1
0 0 1 2 2 1
0 0 0 1 1 1


. (F.8)

4 Comparison of Deterministic and Ensemble-Based
Codes

Comparing the equations, one finds that the ensemble DE recursion (F.7) has the same
form as (F.2). The difference lies in the averaging due to the matrix B̃.

Example 4. It can be shown that staircase codes are contained in the ensemble for
m = n/2 and w = 2 using a proper choice of permutations. It is therefore tempting to
conjecture that for w = 2, the recursion (F.7) also applies to staircase codes. However,
for staircase codes with L = 6, we have

B = γη = 1
2



0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0


, (F.9)

which is different from the matrix B̃ for w = 2 in (F.8). 4

Example 5. For the braided codes in Ex. 3, one can simplify (F.2) by exploiting the
inherent symmetry in the code construction, which implies x(`)

i = x
(`)
i+1 for odd i and any

`. It is then sufficient to retain odd (or even) positions in (F.2). With this simplification,
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4 Comparison of Deterministic and Ensemble-Based Codes

the effective averaging matrix3 for L = 12 is

B′ = 1
3



1 1 0 0 0 0
1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1


, (F.10)

where B′ may be used to replace B in (F.2). Again, one finds that B′ is different from
the matrices B̃ in (F.8). 4

4.1 Ensemble Performance via Deterministic Codes
Since η is binary, all entries in B are either zero or equal to γ. To construct spatially-
coupled PCs that follow the same DE recursion as the ensemble, we need to “emulate”
different multiplicities in the matrix B. This is done as follows.

Definition 2. For given L and w, let γ = 1/w2 and P = w2AᵀA, where A is defined
by (F.5). We define η as follows. First, replace each entry Pi,j in P by a symmetric
w × w matrix with Pi,j ones in each row and column. The resulting wL× wL matrix is
denoted by η′. Finally, η is given by

η2i,2j−1 = η′i,j , η2i−1,2j = η′j,i, for i, j ∈ [wL]. (F.11)

Example 6. Fig. 2 shows the (not necessarily unique) code array for L = 6 and w = 3,
where AᵀA is given in (F.8), which can be regarded as a type of braided code. 4

Using the structure of η in Def. 2, one can show that the DE recursion for Cn(η) in (F.2)
is equivalent to (F.7). For example, the step in (F.11) is the opposite of the simplification
in Ex. 5. The recursion defined by (F.7) constitutes an (unconditionally stable) scalar
admissible system as defined in [10]. One may thus use the potential function approach
in [10] to calculate decoding thresholds as follows (see also [5, 14]).

Definition 3. The single system potential function is defined as Vs(x) , 1
2x

2 −H(x),
where H(x) =

∫ z
0 h(z) dz. In order to highlight the dependence of the potential function

on the channel quality parameter c, we write Vs(x; c).

Definition 4. The potential threshold is defined as

c̄p = sup{c ≥ 0 | min
x∈[0;1]

Vs(x; c) ≥ 0}. (F.12)

3The reader may wonder to what code the matrix (F.10) corresponds to, i.e., the code Cn(η) that results
from using η = 3B′. One can show that Cn(η) can be interpreted as a symmetric subcode of the
braided code, see [17,18].
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Figure 2: Code array corresponding to C24(η) in Def. 2 with L = 6, w = 3.

Using [10, Lem. 36], we have the following theorem.

Theorem 2. Let η and γ be as in Def. 2. For any c < c̄p, there exists w0 <∞ such that
for all w ≥ w0 and all L, the DE recursion (F.2) for Cn(η) converges to the 0 vector.

Remark 2. From Th. 2, the threshold of Cn(η) satisfies c̄ ≥ c̄p for all L and w sufficiently
large. One can further show that c̄ ≥ 2t − 2 if, additionally, t is sufficiently large. The
latter result was proved in [13, Lem. 8] for the spatially-coupled ensemble. It also applies
to the deterministic braided codes in Def. 2, since the DE equations are equivalent.

4.2 Simpler Deterministic Codes
The curious structure of the code array in Fig. 2 is due to our attempt of “reverse-
engineering” the DE equations of the ensemble by means of the deterministic code
construction. This begs the question whether there exist other deterministic spatially-
coupled PCs that exhibit a simpler structure but still achieve performance guarantees
similar to Th. 2. The most natural candidate appears to be the extension of the block-
wise braided code in Fig. 1(b) to larger coupling widths.

Definition 5. For given L and w, let γ = (2w − 1)−1 and let the L × L matrix η′ be
defined by η′i,j = 1 {|i− j| < w}. Finally, let η be as in (F.11) for i, j ∈ [L].

Example 7. For w = 2, η in Def. 5 recovers η in Ex. 3. 4
The resulting DE recursion for Cn(η) is neither equivalent to the ensemble DE recursion

nor to the recursion studied in [10]. However, one can still show the following.
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5 Potential Threshold Optimization

Theorem 3. Let η and γ be as in Def. 5. For any c < c̄p, there exists w0 <∞ such that
for all w ≥ w0 and all L, the DE recursion (F.2) for Cn(η) converges to the 0 vector.

Proof. See the Appendix.

5 Potential Threshold Optimization
In this section, we consider the case where we assign different erasure-correcting capabili-
ties to the component codes. To that end, let τ = (τ1, . . . , τtmax)ᵀ be a probability vector
(i.e., 1ᵀτ = 1 and τ � 0), where τt denotes the fraction of CNs at each position that
can correct t erasures and tmax is the maximum erasure-correcting capability. We further
define the average erasure-correcting capability as t̄ ,

∑tmax
t=1 tτt. The assignment can

be done either deterministically if τtd is an integer for all t, or independently at random
according to τ . In both cases, the distribution τ manifests itself in the DE equation
(F.2) by changing the function h defined in Sec. 2.3 to h(x) =

∑tmax
t=1 τtΨ≥t(cx) (see [17]

for details). This affects the potential function in Def. 3 and thus also the potential
threshold in Def. 4. In particular, both quantities now depend on τ and this change is
reflected in our notation by writing Vs(x; c, τ ) and c̄p(τ ), respectively.
Definition 6. A distribution is said to be regular if τt̄ = 1 for t̄ ∈ N and semi-regular if
τbt̄c = 1 + bt̄c − t̄ and τbt̄c+1 = t̄− bt̄c for t̄ /∈ N.
Theorem 4. For any fixed mean erasure-correcting capability t̄ ≥ 2, a (semi-)regular
distribution maximizes the potential threshold c̄p(τ ).
Proof. See the Appendix.

Th. 4 is in contrast to conventional PCs which typically benefit from employing com-
ponent codes with different strengths. However, Th. 4 does not necessarily imply that
there can be no practical value in employing different component codes also for spatially-
coupled PCs. In practice, quantities such as the coupling width, the component code
length, and the number of decoding iterations are constrained to be finite. Depending on
the severity of these constraints, the potential threshold may not be a good performance
indicator.

6 Conclusion
We studied the asymptotic performance of deterministic spatially-coupled PCs under
iterative decoding. We showed that there exists a family of deterministic braided codes
that performs asymptotically equivalent to a previously considered spatially-coupled PC
ensemble. There also exists a related but structurally simpler braided code family that
attains essentially the same asymptotic performance. Lastly, we showed that employing
component code mixtures for spatially-coupled PCs is not beneficial from an asymptotic
point of view.
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A Proof of Theorems 3 and 4
Proof of Theorem 3. The recursion of interest (after removing odd positions due to
symmetry as explained in Ex. 5) is given by x(`) = h(B′x(`−1)), where B′ = γη′ and γ,
η′ are as in Def. 5. The authors in [10] study the recursion

y(`) = Aᵀf(Ag(y(`−1))) = Aᵀf(ỹ(`)) (F.13)

for suitable functions f , g, where ỹ(`) = Ag(y(`−1)) is defined implicitly. Since h is
strictly increasing and analytic, we can let both f = h and g = h. For this proof, A is
assumed to be of size L×L+ w̃−1 with Ai,j = w̃−1

1 {1 ≤ j − i+ 1 ≤ w̃} for i ∈ [L], j ∈
[L+w̃−1], where w̃ , 2w−1. The potential function Us(x; c) = h(x)x−H(x)−H(h(x))
associated with the scalar recursion x(`) = h(h(x(`−1))) as defined in [10, eq. (4)] predicts
the same potential threshold as the one in Def. 3. According to [10, Lem. 36], the claim
in the theorem is thus true for the recursion (F.13). To show that it must also be true for
the recursion of interest, we argue as follows. Assume that we swap the application of h
and B′ in the recursion of interest and then consider “two iterations at once” according
to

z(`) = B′h(B′h(z(`−1))) = B′h(z̃(`)). (F.14)

We claim that (F.13) dominates (F.14), in the sense that y(∞) = 0 implies z(∞) = 0
(and thus x(∞) = 0). To see this, observe that y(`) has length L+ w̃ − 1, whereas ỹ(`),
z(`), and z̃(`) have length L. We use y(`) = ((y(`)

t )ᵀ, (y(`)
c )ᵀ, (y(`)

b )ᵀ)ᵀ to denote the w−1
top, L center, and w− 1 bottom entries in y(`). We want to show that y(`)

c � z(`) for all
`. Assume this is true for `− 1. This gives the second inequality in

ỹ(`) = Ah(y(`−1)) � B′h(y(`−1)
c ) � B′h(z(`−1)) = z̃(`),

where the first inequality follows from y
(`−1)
t ,y

(`−1)
b � 0 (since y(`) � 0 for all `) and

the (almost identical) structure of A and B′. Observe that we have y(`)
c = B′h(ỹ(`)).

Also z(`) = B′h(z̃(`)) and, since we have just shown that ỹ(`) � z̃(`), the claim follows
by induction on `.

Proof of Theorem 4. Using integration by parts, one may verify that the potential
function in Def. 3 is given by

Vs(x; c, τ ) = x2/2− x+ (t̄− Lτ (cx))/c, (F.15)

where we defined Lτ (x) ,
∑tmax
t=1 τtL(t, x), with L(t, x) ,

∑t−1
k=0 Ψ=k(x)(t− k) for t ∈ N.

For any fixed x ≥ 0, we also define the affine extension of L(t, x) for t ∈ [1,∞) as

L(t, x) = L(btc, x) + (L(dte, x)− L(btc, x))(t− btc). (F.16)
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The proof relies on the fact that L(t, x) is convex in t ∈ [1,∞) for any x ≥ 0. Indeed,
since L(t, x) is the affine extension of a discrete function, it suffices to show that for
t ∈ {2, 3, . . . },

L(t− 1, x) + L(t+ 1, x) = 2L(t, x) + Ψ=t(x) (F.17)
≥ 2L(t, x), (F.18)

since Ψ=t(x) ≥ 0 with equality if and only if x = 0. As a consequence, for any distribution
τ with average erasure-correcting capability t̄ and any x ≥ 0, we have

Lτ (x) ≥ L(t̄, x) = Lτ reg(x), (F.19)

where τ reg denotes the (semi-)regular distribution in Def. 6.
Now, let t , (1, 2, . . . , tmax)ᵀ and consider

max
τ∈T

c̄p(τ ) subject to tᵀτ = t̄, (F.20)

where T = {τ ∈ Rtmax |1ᵀτ = 1, τ � 0}. This can be equivalently written in epigraph
form as

max
c≥0,τ∈T

c subject to c ≤ c̄p(τ ), tᵀτ = t̄. (F.21)

According to (F.12), the first constraint in (F.21) is equivalent to Vs(x; c, τ ) ≥ 0 for
x ∈ [0; 1]. Assume that (F.21) is maximized by some (c∗, τ ∗). Then, for all x ∈ [0; 1], we
have

0 ≤ Vs(x; c∗, τ ∗) ≤ Vs(x; c∗, τ reg), (F.22)

where the last inequality follows from (F.15) and (F.19). Thus, the (semi-)regular dis-
tribution τ reg is feasible and attains (at least) the same threshold value c∗.
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