Agenda

- Welcome and introduction (Chairman)
- Presentation and mention of
 - Faculty Opponent: Rüdiger Urbanke
 - Evaluation Committee: Michael Lentmaier, Gianluigi Liva, Laurent Schmalen
 - Funding sources
 - Contributors to the thesis work
- Errata List
- Short introduction to the thesis work (Faculty Opponent)
- Presentation (25 min.)
- Discussion (60-90 min.)
- Questions and comments from the Evaluation Committee
- Questions from the audience
- Evaluation Committee meeting, decision and lunch (S2 lunch room)

Analysis and Design of Spatially-Coupled Codes with Application to Fiber-Optical Communications

Christian Häger

Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden christian.haeger@chalmers.se

FIBER-OPTIC COMMUNICATIONS RESEARCH CENTER

> PhD Seminar May 30, 2016

CHALMERS

Analysis and Design of Spatially-Coupled Codes with Application to Fiber-Optical Communications

Christian Häger

Many thanks to Alexandre Graell i Amat, Fredrik Brännström, Alex Alvarado, Erik Agrell, and Henry Pfister

Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden christian.haeger@chalmers.se

FIBER-OPTIC COMMUNICATIONS RESEARCH CENTER

> PhD Seminar May 30, 2016

CHALMERS

Introduction ●00	Spatially-Coupled Codes	Spectrally-Efficient Systems	CHALMERS

Cinia opens subsea cable connecting Finland and Germany

Friday 20 May 2016 | 09:48 CET | News Cinia Group announced the official opening and commercial availability of Cinia C-Lion 1, a new submarine cable system that connects Finland and Germany. The

Designed and commissioned by Cinia Group and built in partnership with Alcatel-Lucent Submarine Networks, the Cinia C-Lion1 cable systemtotals 1,200 kilometers in lenath and consists of eight optical fibre pairs.

Cinia opens subsea cable connecting Finland and Germany

Friday 20 May 2016 | 09:48 CET | News Cinia Group announced the official opening and commercial availability of Cinia C-Lion 1, a new submarine cable system that connects Finland and Germany. The

Designed and commissioned by Cinia Group and built in partnership with Alcatel-Lucent Submarine Networks, the Cinia C-Lion1 cable systemtotals 1,200 kilometers in length and consists of eight optical fibre pairs.

Introduction 0●0	Spatially-Coupled Codes	Spectrally-Efficient Systems	CHALMERS

• Long distances result in significant signal attenuation

- Long distances result in significant signal attenuation
- Periodic amplification necessary, which leads to random signal distortions or noise

- Long distances result in significant signal attenuation
- Periodic amplification necessary, which leads to random signal distortions or noise

optical fiber

signal transmitted in Rostock

- Long distances result in significant signal attenuation
- Periodic amplification necessary, which leads to random signal distortions or noise

amplifier optical fiber

signal transmitted in Rostock

- Long distances result in significant signal attenuation
- Periodic amplification necessary, which leads to random signal distortions or noise

signal transmitted in Rostock

- Long distances result in significant signal attenuation
- Periodic amplification necessary, which leads to random signal distortions or noise

- Long distances result in significant signal attenuation
- Periodic amplification necessary, which leads to random signal distortions or noise

Error-correcting codes are essential in modern fiber-optical communication systems to ensure reliable data transmission.

Introduction 000	Spatially-Coupled Codes	Spectrally-Efficient Systems	CHALMERS

Error-Correcting Codes

Introduction 00●	Spatially-Coupled Codes	Deterministic Codes 0000000	Spectrally-Efficient Systems	Conclusion O	CHALMERS
		Error-Cor	recting Codes		
		com	munication thannel t several times	matical descrip ransmission me	tion of the dium
		optical fi	amplifier		

Introduction 000	Spatially-Coupled Codes	Spectrally-Efficient Systems	CHALMERS

Error-Correcting Codes

mathematical description of the transmission medium

Introduction 00●	Spatially-Coupled Codes	Deterministic Codes	Spectrally-Efficient Systems	Conclusion O	CHALMERS
		Error-Corr	ecting Codes		

channel

Introduction 00●	Spatially-Coupled Codes	Deterministic Codes 0000000	Spectrally-Efficient Systems	Conclusion O	CHALMERS
		Error-Cor	recting Codes		
	110	- (\sim		
d	ata bits	comi	munication		٦

communication channel

decoder

encoder

Requirements for Fiber-Optical Communications

- Very high throughputs (100 Gigabits per second or higher)
- Very high net coding gains (close-to-capacity performance)
- Very low bit error rates (below 10^{-15})

Requirements for Fiber-Optical Communications

- Very high throughputs (100 Gigabits per second or higher)
- Very high net coding gains (close-to-capacity performance)
- Very low bit error rates (below 10^{-15})

Spatially-coupled codes are promising codes that can fullfil these requirements.

Requirements for Fiber-Optical Communications

- Very high throughputs (100 Gigabits per second or higher)
- Very high net coding gains (close-to-capacity performance)
- Very low bit error rates (below 10^{-15})

Spatially-coupled codes are promising codes that can fullfil these requirements.

In this talk

- 1. Basics of spatially-coupled codes
- 2. Asymptotic analysis and design of deterministic codes Papers C-F
- 3. Designing spectrally-efficient fiber-optical systems Papers A, B

Spatially-Coupled Codes ●00	Spectrally-Efficient Systems	CHALMERS

Codes on Graphs

Introduction 000	Spatially-Coupled Codes ●○○	Deterministic Codes	Spectrally-Efficient Systems	Conclusion O	CHALMERS
		Codes	on Graphs		
	data bits	1			
	$c_1 c_2 c_3 c_4$				

• Parity bits are formed by adding (modulo 2) subsets of data bits:

• Parity bits are formed by adding (modulo 2) subsets of data bits:

 $c_1 + c_2 + c_3 = c_5$
 $c_2 + c_3 + c_4 = c_6$

Check nodes

• Parity bits are formed by adding (modulo 2) subsets of data bits:

```
c_1 + c_2 + c_3 = c_5
c_2 + c_3 + c_4 = c_6
```

 Code representation via bipartite Tanner graph, where variable nodes represent code bits and check nodes represent parity-check equations

 $code \triangleq set of all bit$ assignments such that all parity-checks are satisfied

• Parity bits are formed by adding (modulo 2) subsets of data bits:

```
c_1 + c_2 + c_3 = c_5
c_2 + c_3 + c_4 = c_6
```

 Code representation via bipartite Tanner graph, where variable nodes represent code bits and check nodes represent parity-check equations


```
c_1 + c_2 + c_3 = c_5
c_2 + c_3 + c_4 = c_6
```

- Code representation via bipartite Tanner graph, where variable nodes represent code bits and check nodes represent parity-check equations
- Code rate R = number of data bits / code length

Codes on Graphs

low-density parity-check (LDPC) code [Gallager, 1962]

```
c_1 + c_2 + c_3 = c_5
c_2 + c_3 + c_4 = c_6
```

- Code representation via bipartite Tanner graph, where variable nodes represent code bits and check nodes represent parity-check equations
- Code rate R = number of data bits / code length


```
c_1 + c_2 + c_3 = c_5
c_2 + c_3 + c_4 = c_6
```

- Code representation via bipartite Tanner graph, where variable nodes represent code bits and check nodes represent parity-check equations
- Code rate R = number of data bits / code length
- Introduce constraint nodes (or generalized check nodes)


```
c_1 + c_2 + c_3 = c_5
c_2 + c_3 + c_4 = c_6
```

- Code representation via bipartite Tanner graph, where variable nodes represent code bits and check nodes represent parity-check equations
- Code rate R = number of data bits / code length
- Introduce constraint nodes (or generalized check nodes)


```
c_1 + c_2 + c_3 = c_5
c_2 + c_3 + c_4 = c_6
```

- Code representation via bipartite Tanner graph, where variable nodes represent code bits and check nodes represent parity-check equations
- Code rate R = number of data bits / code length
- Introduce constraint nodes (or generalized check nodes)

code ≜ set of all bit assignments such that all component code constraints are satisfied

• Parity bits are formed by adding (modulo 2) subsets of data bits:

 $c_1 + c_2 + c_3 = c_5$ $c_2 + c_3 + c_4 = c_6$

- Code representation via bipartite Tanner graph, where variable nodes represent code bits and check nodes represent parity-check equations
- Code rate R = number of data bits / code length
- Introduce constraint nodes (or generalized check nodes)

generalized LDPC code [Tanner, 1981]

```
c_1 + c_2 + c_3 = c_5
c_2 + c_3 + c_4 = c_6
```

- Code representation via bipartite Tanner graph, where variable nodes represent code bits and check nodes represent parity-check equations
- Code rate R = number of data bits / code length
- Introduce constraint nodes (or generalized check nodes)

Introduction 000	Spatially-Coupled Codes ○●○	Deterministic Codes 0000000	Spectrally-Efficient Systems	Conclusion O	CHALMERS

[Felström and Zigangirov, 1999], [Lentmaier et al., 2005], [Kudekar et al., 2011], ...

all.

Start with a regular ("uncoupled") code/graph

[Felström and Zigangirov, 1999], [Lentmaier et al., 2005], [Kudekar et al., 2011], ...

ിറ്റ് variable node degree

Start with a regular ("uncoupled") code/graph

[Felström and Zigangirov, 1999], [Lentmaier et al., 2005], [Kudekar et al., 2011], ...

Start with a regular ("uncoupled") code/graph

[Felström and Zigangirov, 1999], [Lentmaier et al., 2005], [Kudekar et al., 2011], ...

known variable nodes \implies slight graph irregularity at the boundaries \implies better protection

Spatially-Coupled Codes	Spectrally-Efficient Systems	CHALMERS

• Apply (suboptimal) iterative decoding, exchanging messages between variable and constraint nodes

• Apply (suboptimal) iterative decoding, exchanging messages between variable and constraint nodes

• Apply (suboptimal) iterative decoding, exchanging messages between variable and constraint nodes

• Apply (suboptimal) iterative decoding, exchanging messages between variable and constraint nodes

• Apply (suboptimal) iterative decoding, exchanging messages between variable and constraint nodes

6/19

• Apply (suboptimal) iterative decoding, exchanging messages between variable and constraint nodes

6/19

• Apply (suboptimal) iterative decoding, exchanging messages between variable and constraint nodes

• Apply (suboptimal) iterative decoding, exchanging messages between variable and constraint nodes

• Apply (suboptimal) iterative decoding, exchanging messages between variable and constraint nodes

- Apply (suboptimal) iterative decoding, exchanging messages between variable and constraint nodes
- Successful decoding

Introduction 000	Spatially-Coupled Codes ○○●	Deterministic Codes	Spectrally-Efficient Systems	Conclusion O	CHALMERS

- Apply (suboptimal) iterative decoding, exchanging messages between variable and constraint nodes
- Successful decoding even for cases where decoding of "uncoupled" regular codes fails

Spatially-Coupled Codes	Spectrally-Efficient Systems	CHALMERS

- Apply (suboptimal) iterative decoding, exchanging messages between variable and constraint nodes
- Successful decoding even for cases where decoding of "uncoupled" regular codes fails
- Performance can be as good as under optimal decoding [Kudekar et al., 2011], [Yedla et al., 2014]

Summary

Spatial coupling is a tool to construct codes on graphs that have excellent performance under iterative decoding.

Code proposals for fiber-optical communication systems are often very structured (i.e., deterministic) and not random-like (for example [Justesen et al., 2010], [Smith et al., 2012], [Jian et al., 2013]).

Introduction 000	Spatially-Coupled Codes	Deterministic Codes	Spectrally-Efficient Systems 00000	Conclusion O	CHALMERS

Introduction 000	Spatially-Coupled Codes	Deterministic Codes •000000	Spectrally-Efficient Systems	Conclusion O	CHALMER
000	000	●000000	00000	0	CHALMER

_		_	

Introduction 000	Spatially-Coupled Codes	Deterministic Codes •000000	Spectrally-Efficient Systems	Conclusion O	CHALMER
000	000	●000000	00000	0	CHALMER

Introduction 000	Spatially-Coupled Codes	Deterministic Codes •000000	Spectrally-Efficient Systems	Conclusion O	CHALMER
000	000	●000000	00000	0	CHALMER

Spatially-Coupled Codes	Deterministic Codes	Spectrally-Efficient Systems 00000	CHALMERS

rectangular array [Elias, 1954]

each row/column is a codeword in some component code

Spatially-Coupled Codes	Deterministic Codes	Spectrally-Efficient Systems 00000	CHALMERS

rectangular array [Elias, 1954]

each row/column is a codeword in some component code

rectangular array [Elias, 1954]

some component code

Tanner graph

edge = degree-2 variable node

rectangular array [Elias, 1954]

some component code

Introduction 000	Spatially-Coupled Codes	Deterministic Codes •000000	Spectrally-Efficient Systems	Conclusion O	CHALMERS
					<u></u>

rectangular array [Elias, 1954]

Spatially-Coupled Codes	Deterministic Codes •000000	Spectrally-Efficient Systems		CHALMERS
la sur de este	Duralization		C.	

rectangular array [Elias, 1954] staircase array [Smith et al., 2012]

. . .

Spatially-Coupled Codes	Deterministic Codes •000000	Spectrally-Efficient Systems 00000		CHALMERS
la construction de la constru	Dural state		C.	

rectangular array [Elias, 1954] staircase array [Smith et al., 2012]

. . .

Spatially-Coupled Codes	Deterministic Codes •000000	Spectrally-Efficient Systems		CHALMERS
la sur de este	Duralization		<u> </u>	

rectangular array [Elias, 1954] staircase array [Smith et al., 2012]

. . .

Spatially-Coupled Codes	Deterministic Codes •000000	Spectrally-Efficient Systems 00000	CHALMERS
latus du stis	m. Draduat	Codos and Stain	

rectangular array [Elias, 1954] staircase array [Smith et al., 2012]

. . .

Spatially-Coupled Codes	Deterministic Codes ●000000	Spectrally-Efficient Systems	CHAI MERS
latro du otio	m. Draduat	Codos and Stair	

rectangular array [Elias, 1954] staircase array [Smith et al., 2012]

. . .

tion	Spatially-Coupled Codes	Deterministic Codes ●000000	Spectrally-Efficient Systems	Conclusion O	CHALMERS
	Introductio	n: Product	Codes and Stair	case Co	des

rectangular array [Elias, 1954] staircase array [Smith et al., 2012]

. . .

oduction O	Spatially-Coupled Codes	Deterministic Codes	Spectrally-Efficient Systems		CHALMERS
				6	

rectangular array [Elias, 1954] staircase array [Smith et al., 2012]

oduction O	Spatially-Coupled Codes 000	Deterministic Codes ●000000	Spectrally-Efficient Systems		CHALMERS
				6	

rectangular array [Elias, 1954] staircase array [Smith et al., 2012]

rectangular array [Elias, 1954]

staircase array [Smith et al., 2012]

spatially-coupled code

• Deterministic codes with fixed and structured Tanner graph

- Deterministic codes with fixed and structured Tanner graph
- GPCs with iterative bounded-distance decoding are very appealing due to low-complexity hardware implementation

Spatially-Coupled Codes	Deterministic Codes 0●00000	Spectrally-Efficient Systems	CHALMER

Deterministic Codes

pectrally-Efficient Syste 00000 Conclu

CHALMERS

Iterative Bounded-Distance Decoding

0	1	0	1	0	1	0
0	1	0	1	1	0	1
0	1	0	1	0	1	0
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	0	0	1	1	1
0	1	0	0	0	1	1

Introduction 000	Spatially-Coupled Codes	Deterministic Codes 0●00000	Spectrally-Efficient Systems	Conclusion O	CHALMERS
	Itera	tive Bounde	d-Distance Deco	oding	

0	?	0	?	0	1	?
?	1	0	1	1	0	1
0	1	0	?	0	?	?
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	?	?	1	1	?
0	1	0	?	0	1	1

- Codeword transmission over binary erasure channel with erasure probability \boldsymbol{p}

Introduction 000	Spatially-Coupled Codes	Deterministic Codes 0●00000	Spectrally-Efficient Systems	Conclusion O	CHALMERS
	ltera	tive Bounde	d-Distance Deco	oding	

0	?	0	?	0	1	?
?	1	0	1	1	0	1
0	1	0	?	0	?	?
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	?	?	1	1	?
0	1	0	?	0	1	1

- Codeword transmission over binary erasure channel with erasure probability \boldsymbol{p}

Introduction 000	Spatially-Coupled Codes	Deterministic Codes 0●00000	Spectrally-Efficient Systems	Conclusion O	CHALMERS
	Itera	tive Rounde	d-Distance Decc	ding	

0	?	0	?	0	1	?
?	1	0	1	1	0	1
0	1	0	?	0	?	?
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	?	?	1	1	?
0	1	0	?	0	1	1

• Codeword transmission over binary erasure channel with erasure probability p

Introduction 000	Spatially-Coupled Codes	Deterministic Codes ○●○○○○○	Spectrally-Efficient Systems	Conclusion O	CHALMERS
	ltera	tive Bounded	d-Distance Deco	ding	

0	?	0	?	0	1	?
?	1	0	1	1	0	1
0	1	0	?	0	?	?
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	?	?	1	1	?
0	1	0	?	0	1	1

- Codeword transmission over binary erasure channel with erasure probability \boldsymbol{p}
- Each constraint node corresponds to *t*-erasure correcting component code

Introduction 000	Spatially-Coupled Codes	Deterministic Codes ○●○○○○○	Spectrally-Efficient Systems	Conclusion O	CHALMERS
	Itera	tive Bounded	d-Distance Deco	oding	

0	?	0	?	0	1	?
?	1	0	1	1	0	1
0	1	0	?	0	?	?
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	?	?	1	1	?
0	1	0	?	0	1	1

- Codeword transmission over binary erasure channel with erasure probability \boldsymbol{p}
- Each constraint node corresponds to *t*-erasure correcting component code
- ℓ iterations of bounded-distance decoding = peeling of vertices with degree $\leq t$ (in parallel)

1st iteration (t = 2)

0	?	0	?	0	1	?
?	1	0	1	1	0	1
0	1	0	?	0	?	?
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	?	?	1	1	?
0	1	0	?	0	1	1

- Codeword transmission over binary erasure channel with erasure probability \boldsymbol{p}
- Each constraint node corresponds to *t*-erasure correcting component code
- ℓ iterations of bounded-distance decoding = peeling of vertices with degree $\leq t$ (in parallel)

1st iteration (t = 2)

0	1	0	?	0	1	?
0	1	0	1	1	0	1
0	1	0	?	0	1	?
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	0	?	1	1	?
0	1	0	0	0	1	1

- Codeword transmission over binary erasure channel with erasure probability \boldsymbol{p}
- Each constraint node corresponds to *t*-erasure correcting component code
- ℓ iterations of bounded-distance decoding = peeling of vertices with degree $\leq t$ (in parallel)

2nd iteration (t = 2)

0	1	0	?	0	1	?
0	1	0	1	1	0	1
0	1	0	?	0	1	?
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	0	?	1	1	?
0	1	0	0	0	1	1

- Codeword transmission over binary erasure channel with erasure probability \boldsymbol{p}
- Each constraint node corresponds to *t*-erasure correcting component code
- ℓ iterations of bounded-distance decoding = peeling of vertices with degree $\leq t$ (in parallel)

2nd iteration (t = 2)

0	1	0	1	0	1	0
0	1	0	1	1	0	1
0	1	0	1	0	1	0
1	1	1	0	1	1	0
0	0	1	0	0	0	1
1	0	0	0	1	1	1
0	1	0	0	0	1	1

- Codeword transmission over binary erasure channel with erasure probability \boldsymbol{p}
- Each constraint node corresponds to *t*-erasure correcting component code
- ℓ iterations of bounded-distance decoding = peeling of vertices with degree $\leq t$ (in parallel)

Introduction 000	Spatially-Coupled Codes	Deterministic Codes 00●0000	Spectrally-Efficient Systems	Conclusion O	CHALMERS
		Staircase Co	de Optimization		

Problem Formulation

For staircase code with fixed code rate $R,\,{\rm find}~{\rm ``good''}$ component codes

Problem Formulation

For staircase code with fixed code rate R, find "good" component codes

 [Zhang and Kschischang, 2014] use simulations to predict performance → computationally intensive

Problem Formulation

For staircase code with fixed code rate R, find "good" component codes

• [Zhang and Kschischang, 2014] use simulations to predict performance → computationally intensive

Problem Formulation

For staircase code with fixed code rate R, find "good" component codes

• [Zhang and Kschischang, 2014] use simulations to predict performance → computationally intensive

Problem Formulation

For staircase code with fixed code rate R, find "good" component codes

• [Zhang and Kschischang, 2014] use simulations to predict performance → computationally intensive

Problem Formulation

For staircase code with fixed code rate R, find "good" component codes

- [Zhang and Kschischang, 2014] use simulations to predict performance → computationally intensive
- Approach in Paper C based on a connection between staircase codes and random-like spatially-coupled codes from [Jian et al., 2012]

Spectrally-Efficient System

Conclusio

CHALMERS

Staircase Code Optimization

Problem Formulation

For staircase code with fixed code rate $R, \, {\rm find} \ {\rm "good"} \, {\rm component} \ {\rm codes}$

- [Zhang and Kschischang, 2014] use simulations to predict performance → computationally intensive
- Approach in Paper C based on a connection between staircase codes and random-like spatially-coupled codes from [Jian et al., 2012]

Spectrally-Efficient System

Conclus

CHALMERS

Staircase Code Optimization

Problem Formulation

For staircase code with fixed code rate $R, \, {\rm find} \ {\rm "good"} \, {\rm component} \ {\rm codes}$

- [Zhang and Kschischang, 2014] use simulations to predict performance → computationally intensive
- Approach in Paper C based on a connection between staircase codes and random-like spatially-coupled codes from [Jian et al., 2012]
- Efficient asymptotic analysis via density evolution [Luby et al., 1998], [Richardson and Urbanke, 2001]

Spectrally-Efficient System 00000 Conclusio

CHALMERS

Staircase Code Optimization

Problem Formulation

For staircase code with fixed code rate $R, \, {\rm find} \ {\rm "good"} \, {\rm component} \, \, {\rm codes}$

- [Zhang and Kschischang, 2014] use simulations to predict performance → computationally intensive
- Approach in Paper C based on a connection between staircase codes and random-like spatially-coupled codes from [Jian et al., 2012]
- Efficient asymptotic analysis via density evolution [Luby et al., 1998], [Richardson and Urbanke, 2001]

Deterministic Codes

Spectrally-Efficient System

Conclusi

CHALMERS

Staircase Code Optimization

Problem Formulation

For staircase code with fixed code rate $R, \, {\rm find} \ {\rm "good"} \, {\rm component} \ {\rm codes}$

- [Zhang and Kschischang, 2014] use simulations to predict performance \rightarrow computationally intensive
- Approach in Paper C based on a connection between staircase codes and random-like spatially-coupled codes from [Jian et al., 2012]
- Efficient asymptotic analysis via density evolution [Luby et al., 1998], [Richardson and Urbanke, 2001]
- Works well, however, only heuristically motivated

Spectrally-Efficient System

Conclusi

CHALMERS

Staircase Code Optimization

Problem Formulation

For staircase code with fixed code rate $R,\,{\rm find}~{\rm ``good''}$ component codes

- [Zhang and Kschischang, 2014] use simulations to predict performance → computationally intensive
- Approach in Paper C based on a connection between staircase codes and random-like spatially-coupled codes from [Jian et al., 2012]
- Efficient asymptotic analysis via density evolution [Luby et al., 1998], [Richardson and Urbanke, 2001]
- Works well, however, only heuristically motivated

Fundamental question

Is it possible to directly analyze staircase codes (and other deterministic GPCs) without the detour to random-like codes? Papers D-F

ction Spatially-Coupled Codes Deterministic Codes Spectrally-Efficient Systems Conclusion OCOOO CHALMERS

Parametrized Construction of Generalized Product Codes

product codes

ction Spatially-Coupled Codes Deterministic Codes Spectrally-Efficient Systems Conclusion OCOOO CHALMERS

Parametrized Construction of Generalized Product Codes

product codes

ction Spatially-Coupled Codes Deterministic Codes Spectrally-Efficient Systems Conclusion OCOOO CHALMERS

Parametrized Construction of Generalized Product Codes

product codes

 η : symmetric $L \times L$ matrix that defines graph connectivity

 $\eta = \left(\begin{smallmatrix} 0 & 1 \\ 1 & 0 \end{smallmatrix}
ight)$

1

 η : symmetric $L \times L$ matrix that defines graph connectivity

 η : symmetric $L \times L$ matrix that defines graph connectivity

Parametrized Construction of Generalized Product Codes

product codes

tion Spatially-Coupled Codes Deterministic Codes Spectrally-Efficient Systems Conclusion OCOOO CHALMERS

Parametrized Construction of Generalized Product Codes

product codes

staircase codes

n: "problem size", proportional to the number of constraint nodes

tion Spatially-Coupled Codes Deterministic Codes Spectrally-Efficient Systems Conclusion OCOOO CHALMERS

Parametrized Construction of Generalized Product Codes

product codes

staircase codes

n: "problem size", proportional to the number of constraint nodes

increasing n

tion Spatially-Coupled Codes Deterministic Codes Spectrally-Efficient Systems Conclusion OCO-000 OCHALMERS

Parametrized Construction of Generalized Product Codes

product codes

staircase codes

n: "problem size", proportional to the number of constraint nodes

increasing n

Introduction 000	Spatially-Coupled Codes	Deterministic Codes 0000●00	Spectrally-Efficient Systems	Conclusion O	CHALMERS

Density Evolution

Introduction 000	Spatially-Coupled Codes	Deterministic Codes	Spectrally-Efficient Systems	Conclusion O	CHALMERS

Density Evolution

• What happens asymptotically for $n \to \infty$?

Introduction 000	Spatially-Coupled Codes	Deterministic Codes	Spectrally-Efficient Systems	Conclusion O	CHALMERS

Density Evolution

- What happens asymptotically for $n \to \infty$?
- Let p = c/n for c > 0, where c is the effective channel quality

- What happens asymptotically for $n \to \infty$?
- Let p = c/n for c > 0, where c is the effective channel quality

- What happens asymptotically for $n \to \infty$?
- Let p = c/n for c > 0, where c is the effective channel quality

- What happens asymptotically for $n \to \infty$?
- Let p = c/n for c > 0, where c is the effective channel quality

$$\boldsymbol{x}^{(\ell)} = \boldsymbol{\Psi}_{\geq t}(c\boldsymbol{B}\boldsymbol{x}^{(\ell-1)})$$

- What happens asymptotically for $n \to \infty$?
- Let p = c/n for c > 0, where c is the effective channel quality

- What happens asymptotically for $n \to \infty$?
- Let p = c/n for c > 0, where c is the effective channel quality

effective channel quality c

initial condition

 $\boldsymbol{x}^{(0)} = (1, \ldots, 1)$

- What happens asymptotically for $n \to \infty$?
- Let p = c/n for c > 0, where c is the effective channel quality

effective channel quality c

- What happens asymptotically for $n \to \infty$?
- Let p = c/n for c > 0, where c is the effective channel quality

- What happens asymptotically for $n \to \infty$?
- Let p = c/n for c > 0, where c is the effective channel quality

- What happens asymptotically for $n \to \infty$?
- Let p = c/n for c > 0, where c is the effective channel quality

- What happens asymptotically for $n \to \infty$?
- Let p = c/n for c > 0, where c is the effective channel quality

Introduction 000	Spatially-Coupled Codes	Deterministic Codes 00000●0	Spectrally-Efficient Systems	Conclusion O	CHALMERS

Comparison of Deterministic and Random-Like Codes

Comparison of Deterministic and Random-Like Codes

Deterministic

$$\boldsymbol{x}^{(\ell)} = \boldsymbol{\Psi}_{\geq t}(c\boldsymbol{B}\boldsymbol{x}^{(\ell-1)})$$

 $(\boldsymbol{B}=\gamma\boldsymbol{\eta})$

$$\frac{1}{2} \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

• Equations have the same form \implies similar performance

• Equations have the same form \implies similar performance

- Equations have the same form ⇒ similar performance
- The performance of random-like codes (over the binary erasure channel) can be "emulated" with deterministic codes Paper F

Design and Analysis of Deterministic Codes

Summary

Design and Analysis of Deterministic Codes

Summary

• Several deterministic codes (including spatially-coupled versions) have been proposed for fiber-optical communications

Design and Analysis of Deterministic Codes

Summary

- Several deterministic codes (including spatially-coupled versions) have been proposed for fiber-optical communications
- Rigorous asymptotic performance analysis over the binary erasure channel under iterative bounded-distance decoding possible

Design and Analysis of Deterministic Codes

Summary

- Several deterministic codes (including spatially-coupled versions) have been proposed for fiber-optical communications
- Rigorous asymptotic performance analysis over the binary erasure channel under iterative bounded-distance decoding possible
- Future work: extension to binary symmetric channel

Spectrally-Efficient Communication

Large interest in analyzing and designing spectrally-efficient fiber-optical systems ([Essiambre et al., 2010], [Smith and Kschischang, 2010], [Schmalen et al., 2013], [Beygi et al., 2014], ...)

Spectrally-Efficient Communication

communication channel

Spatially-Coupled Codes	Spectrally-Efficient Systems	CHALMERS
_	 -	

Spectrally-Efficient Communication

000	001	011	010	110	111	101	100
_							· · ·
_							_

000	001	011	010	110	111	101	100
-		-	-	-	-		
_							

• Approximate setup: parallel channels with different qualities (constellation size determines the number of channels)

• Approximate setup: parallel channels with different qualities (constellation size determines the number of channels)

- Approximate setup: parallel channels with different qualities (constellation size determines the number of channels)
- Fix one binary encoder/decoder pair

- Approximate setup: parallel channels with different qualities (constellation size determines the number of channels)
- Fix one binary encoder/decoder pair
- Bit mapper determines the allocation of coded bits to the channels

- Approximate setup: parallel channels with different qualities (constellation size determines the number of channels)
- Fix one binary encoder/decoder pair
- Bit mapper determines the allocation of coded bits to the channels

Problem Formulation ([Richter et al., 2007], [Cheng et al., 2012], ...) Optimize the bit mapper for a given code and signal constellation

Introduction 000	Spatially-Coupled Codes	Deterministic Codes 0000000	Spectrally-Efficient Systems 0●000	Conclusion O	CHALMERS

Protograph LDPC Codes

Protograph LDPC Codes

• Compact representation of a large random-like graph [Thorpe, 2005]

• Compact representation of a large random-like graph [Thorpe, 2005]

• Compact representation of a large random-like graph [Thorpe, 2005]

- Compact representation of a large random-like graph [Thorpe, 2005]
- We propose a bit mapper optimization technique that is more flexible than previous approaches in [Divsalar and Jones, 2005], [Jin et al., 2010], [Van Nguyen et al., 2011]

- Compact representation of a large random-like graph [Thorpe, 2005]
- We propose a bit mapper optimization technique that is more flexible than previous approaches in [Divsalar and Jones, 2005], [Jin et al., 2010], [Van Nguyen et al., 2011]

AR4JA codes [Divsalar et al., 2005]

Paper A

- Compact representation of a large random-like graph [Thorpe, 2005]
 - We propose a bit mapper optimization technique that is more flexible than previous approaches in [Divsalar and Jones, 2005], [Jin et al., 2010], [Van Nguyen et al., 2011]

AR4JA codes [Divsalar et al., 2005]

Introduction 000	Spatially-Coupled Codes	Deterministic Codes	Spectrally-Efficient Systems 00●00	Conclusion O	CHALMERS

Terminated

Introduction 000	Spatially-Coupled Codes	Deterministic Codes	Spectrally-Efficient Systems 00●00	Conclusion O	CHALMERS

Terminated

protograph

graph irregularity yes

yes (boundaries)

Introduction 000	Spatially-Coupled Codes	Deterministic Codes 0000000	Spectrally-Efficient Systems 00●00	Conclusion O	CHALMERS

yes (boundaries)

graph irregularity

yes (capacity-approaching)

wave effect

Introduction 000	Spatially-Coupled Codes 000	Deterministic Codes 0000000	Spectrally-Efficient Systems	Conclusion O	CHALMER

yes (boundaries)

graph irregularity

wave effect

yes (capacity-approaching)

rate loss

yes

Introduction 000	Spatially-Coupled Codes	Deterministic Codes 0000000	Spectrally-Efficient Systems 00●00	Conclusion O	CHALMERS
		Terminated		Tail-biting	
		: 1. : 1. : 1	R.: R.: R	. R. A	:R ::R::

yes (boundaries)

graph irregularity

yes

yes

wave effect

(capacity-approaching)

rate loss

Introduction 000	Spatially-Coupled Codes	Deterministic Codes 0000000	Spectrally-Efficient Systems 00●00	Conclusion O	CHALME
		Terminat	ed	Tail-bit	ting
					Ĵ.Ă.
		<u>MMM</u>	NN -	NAA	AN
				INIAN	

no

yes (boundaries)

protograph

yes (bounda

 ${\it graph\ irregularity}$

yes (capacity-approaching)

yes

wave effect

rate loss

RS

yes

rate loss

Idea: Use unequal error protection of a multilevel signal constellation to induce wave-like decoding behavior for tail-biting codes.

predicted BER per spatial position (optimized)

predicted BER per spatial position (optimized)

17 / 19

predicted BER per spatial position (optimized)

predicted BER per spatial position (optimized)

spatial position predicted BER per spatial position (optimized)

predicted BER per spatial position (optimized)

spatial position

predicted BER per spatial position (optimized)

spatial position

predicted BER per spatial position (optimized)

predicted BER per spatial position (optimized)

predicted BER per spatial position (optimized)

predicted BER per spatial position (optimized)

predicted BER per spatial position (optimized)

predicted BER per spatial position (optimized)

predicted BER per spatial position (optimized)

predicted BER per spatial position (optimized)

spatial position predicted BER per spatial position (optimized)

spatial position predicted BER per spatial position (optimized)

predicted BER per spatial position (optimized)

predicted BER per spatial position (optimized)

spatial position

spatial position

predicted BER per spatial position (optimized)

spatial position

predicted BER per spatial position (optimized)

spatial position

predicted BER per spatial position (optimized)

spatial position

predicted BER per spatial position (optimized)

predicted BER per spatial position (optimized)

	Loca spatia si	first navior, es				
-	5	10	15	20	25	30

Summary

Summary

• Spectrally-efficient communication with binary codes leads to the problem of bit mapper optimization

Summary

- Spectrally-efficient communication with binary codes leads to the problem of bit mapper optimization
- Optimized bit mapper can offer significant performance improvements

Summary

- Spectrally-efficient communication with binary codes leads to the problem of bit mapper optimization
- Optimized bit mapper can offer significant performance improvements
- For tail-biting spatially-coupled codes, unequal error protection of a nonbinary signal constellation can be exploited to induce wave-like decoding behavior

Introduction 000	Spatially-Coupled Codes	Deterministic Codes	Spectrally-Efficient Systems 00000	Conclusion	CHALMERS

Introduction 000	Spatially-Coupled Codes	Deterministic Codes 0000000	Spectrally-Efficient Systems 00000	Conclusion	CHALMERS	

• Spatially-coupled codes have excellent performance using practical iterative decoding algorithms

Introduction 000	Spatially-Coupled Codes	Deterministic Codes	Spectrally-Efficient Systems	Conclusion •	CHALMERS

- Spatially-coupled codes have excellent performance using practical iterative decoding algorithms
- Certain deterministic codes (including spatially-coupled codes) can be analyzed rigorously with density evolution over the binary erasure channel

Introduction 000	Spatially-Coupled Codes	Deterministic Codes	Spectrally-Efficient Systems	Conclusion	CHALMERS	

- Spatially-coupled codes have excellent performance using practical iterative decoding algorithms
- Certain deterministic codes (including spatially-coupled codes) can be analyzed rigorously with density evolution over the binary erasure channel
- Optimizing bit mappers can offer significant performance improvements, in particular for tail-biting spatially-coupled codes

Introduction 000	Spatially-Coupled Codes 000	Deterministic Codes	Spectrally-Efficient Systems	Conclusion •	CHALMERS	

- Spatially-coupled codes have excellent performance using practical iterative decoding algorithms
- Certain deterministic codes (including spatially-coupled codes) can be analyzed rigorously with density evolution over the binary erasure channel
- Optimizing bit mappers can offer significant performance improvements, in particular for tail-biting spatially-coupled codes

Thank you!

FIRCE

FIBER-OPTIC COMMUNICATIONS

RESEARCH CENTER

References I

IEEE Trans. Inf. Theory, 45(6):2181-2191.

References II

Gallager, R. G. (1962).

Low-density parity-check codes. IRE Trans. Inf. Theory, 8(1):21-28.

Jian, Y.-Y., Pfister, H. D., and Narayanan, K. R. (2012).

Approaching capacity at high rates with iterative hard-decision decoding. In Proc. IEEE Int. Symp. Information Theory (ISIT), Cambridge, MA.

Jian, Y.-Y., Pfister, H. D., Narayanan, K. R., Rao, R., and Mazahreh, R. (2013). Iterative hard-decision decoding of braided BCH codes for high-speed optical communication. In *Proc. IEEE Glob. Communication Conf. (GLOBECOM)*, Atlanta, GA.

Jin, Y., Jiang, M., and Zhao, C. (2010).

Optimized variable degree matched mapping for protograph LDPC coded modulation with 16QAM. In Proc. Int. Symp. Turbo Codes and Iterative Information Processing (ISTC), Brest, France.

Justesen, J., Larsen, K. J., and Pedersen, L. A. (2010). Error correcting coding for OTN. *IEEE Commun. Mag.*, 59(9):70–75.

Kudekar, S., Richardson, T., and Urbanke, R. (2011).

Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC.

IEEE Trans. Inf. Theory, 57(2):803-834.

Lentmaier, M., Sridharan, A., Zigangirov, K. S., and Costello, Jr., D. J. (2005). Terminated LDPC convolutional codes with thresholds close to capacity. In Proc. IEEE Int. Symp. Information Theory (ISIT). Adelaide. Australia.

References III

A recursive approach to low complexity codes. IEEE Trans. Inf. Theory, 27(5):533–547.

CHALMERS

References IV

Thorpe, J. (2005).

Low-density parity-check (LDPC) codes constructed from protographs. *IPN Progress Report* 42-154, *JPL*.

Van Nguyen, T., Nosratinia, A., and Divsalar, D. (2011).

Threshold of protograph-based LDPC coded BICM for Rayleigh fading. In Proc. IEEE Glob. Communication Conf. (GLOBECOM), Houston, TX.

Yedla, A., Jian, Y.-Y., Nguyen, P. S., and Pfister, H. D. (2014).

A simple proof of Maxwell saturation for coupled scalar recursions. *IEEE Trans. Inf. Theory*, 60(11):6943–6965.

Zhang, L. M. and Kschischang, F. R. (2014).

Staircase codes with 6% to 33% overhead. J. Lightw. Technol., 32(10):1999–2002.