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Abstract
Motivated by the realization that even the enormous bandwidth available in an opti-
cal fiber is finite and valuable, the design of spectrally e�cient long-haul fiber-optical
communication systems has become an important research topic. Compared to other
wireline technologies, e.g., transmission over coaxial cables, the main challenge comes
from the inherent nonlinearity of the underlying communication channel caused by the
relatively high signal intensities. In this thesis, we study the design of spectrally e�cient
fiber-optical systems for both uncoded and coded transmission scenarios.

We consider the problem of designing higher-order signal constellations for a system
that is severly impaired by nonlinear phase noise. By optimizing amplitude phase-shift
keying constellations, which can be seen as the union of phase-shift keying constellation
with di�erent amplitude levels, gains of up to 3.2 dB at a symbol error probability of 10≠2

are shown to be achievable compared to conventional constellations. We also illustrate
a somewhat counterintuitive behavior of optimized constellations for very high input
powers and nonlinear distortions. In particular, sacrificing a constellation point or ring
may be beneficial in terms of the overall performance of the constellation.

Furthermore, we study polarization-multiplexed transmission, where spectral e�ciency
is increased by encoding data onto both polarizations of the light. For a memoryless fiber-
optical channel, we introduce a low-complexity detector which is based on an amplitude-
dependent phase rotation and subsequent threshold detection. The complexity compared
to the four-dimensional maximum likelihood detector is considerably reduced, albeit at
the expense of some performance loss.

Lastly, we consider the design of a coded fiber-optical system operating at high spectral
e�ciency. In particular, we study the optimization of the mapping of the coded bits to
the modulation bits for a polarization-multiplexed fiber-optical system that is based on
the bit-interleaved coded modulation paradigm. This technique, which we refer to as bit
mapper optimization, is extended to the class of spatially coupled low-density parity-
check codes, which have shown outstanding performance over memoryless binary-input
channels. For a transmission scenario without optical inline dispersion compensation, the
results show that the transmission reach can be extended by roughly up to 8%, without
significantly increasing the system complexity.

Keywords: Bit-interleaved coded modulation, bit mapper, constellation optimization,
detector, fiber-optical communication, low-density parity-check codes, spatial coupling.
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CHAPTER 1

Background

When requesting a website, most internet users are probably unaware that the digital
data is modulated onto a light source and transmitted over thousands of kilometers
in an optical waveguide, a so-called optical fiber, at some point on the way from the
remote server to their home computer or mobile device. In fact, more than 99% of the
global intercontinental tra�c is carried over optical fiber and such “long-haul” fiber-
optical communication systems are the key enabler of high-speed internet data transfer
connecting cities, countries, and continents [1].

Optical fiber as a transmission medium is very well suited for sending large amounts of
data over long distances. Engineers and physicists have spent a great e�ort to refine the
fiber material to be very transparent for optical light over a large frequency range and
to improve the components in an optical transmission system, e.g., lasers and amplifiers.
Meanwhile, however, fiber-optical systems traditionally employ digital modulation tech-
niques that are rather wasteful with the available frequency spectrum. As an example,
switching the light source on and o� according to the digital data stream, referred to as
on-o� keying (OOK), is highly ine�cient from a spectral viewpoint.

To keep up with the increasing data rate demands of current applications, and to enable
innovative broadband technologies in the future, it becomes more and more apparent that
next generation fiber-optical systems need to use the available spectrum more e�ciently.
The bandwidth of optical fibers is now considered a limited resource and due to this
realization, there is currently a great deal of interest in determining the ultimate limits
of optical systems in terms of spectral e�ciency [2–4] and developing practical schemes
that can achieve these limits [5–7]. The distinctive feature, and at the same time the
main challenge in fiber-optical communication, is that the underlying communication
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Chapter 1 Background

channel is fundamentally nonlinear. The fiber nonlinearity is considered as one of the
limiting factors for increasing the data rates in long-haul systems [8–10]. Some important
problems that arise in the design of spectrally e�cient fiber-optical systems are addressed
in this thesis.

To improve the spectral e�ciency over OOK, the data can be encoded into multiple
amplitude and/or phase levels of the optical carrier. This leads to the problem of design-
ing good signal constellations that are robust to the severe nonlinear distortions. Signal
constellation design can be thought of as optimizing the placement of a given number
of points in two or more dimensions under some constraints. This problem can be con-
sidered as a classical problem in communication theory [11, Ch. 1] and it is revisited in
Paper A, paying special attention to fiber nonlinearities.

A further increase in spectral e�ciency can be made by properly utilizing both polar-
izations of the optical light, which we refer to as polarization-multiplexed (PM) trans-
mission. Compared to single-polarization (SP) transmission, signals are now represented
as points in a four- rather than a two-dimensional space. Optimal maximum likelihood
(ML) detection in four dimensions can be computationally very complex, particularly for
constellations with many points. Therefore, in Paper B, we study a detector design for
a recently developed four-dimensional, memoryless fiber-optical channel model with the
intention to significantly reduce the detection complexity.

The problems described above are related to uncoded transmission schemes and do not
consider forward error correction (FEC). However, FEC needs to be considered in order
to operate close to the ultimate transmission limits of optical fibers. We therefore also
consider the problem of designing coded transmission systems at high spectral e�ciencies
in Paper C. Here, we restrict ourselves to systems that are based on the bit-interleaved
coded modulation (BICM) paradigm. BICM can be seen as a pragmatic way to combine
signal constellations consisting of many points with powerful binary error correction
codes. In particular, we study how the coded bits should be allocated to the modulation
bits. We refer to this problem as bit mapper optimization. As one particular example,
we consider spatially coupled low-density parity-check (SC-LDPC) codes which have
recently been shown to achieve outstanding performance over a variety of communication
channels [12–14].

1.1 Thesis Organization
The licentiate degree is an intermediate step for a doctoral student towards the final PhD
degree and the licentiate thesis documents the progress that has been made over a period
of roughly two to two and a half years. The format of this thesis is a so-called collection
of papers. It is divided into two parts, where the first part serves as an introduction to
the appended papers in the second part.

The remainder of the first part of this thesis is structured as follows. In Chapter 2,
we provide an introduction to fiber-optical channel modeling and describe the origin of
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1.2 Notation

the channel models that are used in the appended papers. Our main goal is to show
that all utilized models have the same mathematical foundation, namely the nonlinear
Schrödinger equation (NLSE), albeit assuming somewhat di�erent material parameters
and system configurations. In Chapter 3, we explain the necessary theoretical background
for the optimization problem that we consider in Paper C. For Paper C, the reader
is assumed to be somewhat familiar with coding theory and in particular low-density
parity-check (LDPC) codes, which we discuss in Chapter 3. Finally, some conclusions
are summarized in Chapter 4, where we also briefly discuss future work.

1.2 Notation
Throughout this thesis, vectors are denoted by boldface letters A, matrices by blackboard
letters A, sets by calligraphic letters A (except the sets containing the real numbers R,
complex numbers C, integers Z, and natural numbers N), and random variables by capital
letters A. The probability density function (PDF) of a continuous random variable Y is
denoted by f

Y

( · ) and E[ · ] denotes expectation. A matrix transpose is denoted by ( · )|.
”(t) denotes Dirac’s delta function while ”[k] denotes the Kronecker delta. Convolution
is denoted by ⇣. For a continuous-time signal x(t), we write x(t) ¶≠• X(f) to indicate
its Fourier transform. The imaginary unit is denoted by ä ,

Ô
≠1.

We also acknowledge the following notational inconsistencies. In Paper A, x and y

are used for the channel input and output, respectively, whereas in Paper B and C,
x and y are used to di�erentiate between polarizations. In Paper A, conditioning on
particular realization of a random variable is denoted by f

Y |X=x

(y), whereas in the
introductory part of the thesis we use f

Y |X(y|x) for readability purposes. In Papers
A and B, the spontaneous emission factor nsp appeared in the context of distributed
amplification, which should be replaced with the photon occupancy factor K

T

for Raman
amplification [2]. Further, the additive noise power spectral density N0 in Paper A is
defined per unit length and this definition is inconsistent with the definition used in Part
I of the thesis where it has units of [W/Hz]. We use a di�erent font N0 in Part I to
indicate the di�erence.
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CHAPTER 2

Fiber-Optical Channel Modeling

A channel model is a mathematical description of the propagation medium and possi-
bly also includes certain elements of the transmitter and receiver (e.g., filters). In the
appended papers, the starting point for the analysis is a discrete memoryless channel,
which can be specified in the form of a conditional PDF. This chapter is intended to
describe the origin of the assumed PDFs and also to give the reader a broader picture
about optical channel modeling in general.

We are concerned with coherent, long-haul (i.e., distances exceeding 2000 km) data
transmission over single-mode fibers (SMFs) and the main challenge is a nonlinear e�ect
caused by the relatively high signal power in relation to the small cross-section area of the
fiber. Without going further into the physical details, a useful way to think about this
e�ect is to imagine that the presence of an optical signal can compress the fiber material
(in most cases silica) to such a degree that its propagation properties, in particular the
refractive index, are changed in a nonlinear way [9, p. 18].

If nonlinear e�ects are ignored, an optical fiber can be regarded as a linear dispersive
channel. Motivated by this, we start by reviewing some important results for this channel
in Section 2.1. In Section 2.2, we discuss the NLSE, which is a deterministic channel
model for an SMF. Multi-span links consisting of several SMFs and di�erent amplification
types are described in Section 2.3. In Section 2.4, the channel models assumed in the
papers are introduced and compared.
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x
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channel
equalization
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y(t)
p(≠t)

channel matched filter and samplinglinear modulation

k

Õ
T

s

y
k

Õ

Figure 2.1: Block diagram of a system with linear modulation, a linear dispersive AWGN
channel, and a receiver that obtains a su�cient statistic for optimal detection.

2.1 Linear Dispersive Channels
Consider the complex-valued linear dispersive additive white Gaussian noise (AWGN)
channel

y(t) = h(t) ⇣ x(t) + n(t), (2.1)

where x(t) is the baseband representation of the input signal, y(t) is the output sig-
nal, h(t) is the channel impulse response, and n(t) is a circularly symmetric complex
Gaussian stochastic process with zero mean with power spectral density (PSD) N0, i.e.,
E[N(t)Nú(tÕ)] = N0”(t ≠ tÕ). Given an appropriate impulse response h(t), equation (2.1)
is widely used as a model for, e.g., wireline transmission over coaxial cables. A vast
amount of literature exists on the linear dispersive AWGN channel and many impor-
tant problems such as the optimal receiver/detector structure, the ultimate achievable
transmission rates, or practical schemes that achieve these rates can be considered well
studied and understood by now, see [15] and references therein.

In the following, we review some important concepts and results under the assump-
tion that h(t) is a unit gain all-pass filter, i.e., |H(f)| = 1, where h(t) ¶≠• H(f). This
assumption will turn out to be accurate for the fiber-optical channel later if nonlinear
e�ects are ignored. Henceforth, the receiver is always assumed to have perfect knowledge
about h(t), obtained through an appropriate channel estimation technique. Furthermore,
it is assumed that perfect carrier and timing synchronization between transmitter and
receiver has been achieved.

In Fig. 2.1, a block diagram of the considered system is shown. We start with a linearly
pulse-modulated1 input signal

x(t) =
ÿ

k

x
k

p(t ≠ kT
s

), (2.2)

where x
k

œ C are the information symbols for k œ Z, p(t) is the real-valued pulse shape,
and T

s

is the symbol period. The symbol rate is defined as R
s

= 1/T
s

. The input signal

1A di�erent approach to communicate over linear dispersive channels is through multicarrier transmis-
sion, which we do not consider in this thesis.
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2.1 Linear Dispersive Channels

x(t) is assumed to be bandlimited to a bandwidth W Ø 1/T
s

and the power of x(t) is

P , lim
T æŒ

1
2T

⁄
T

≠T

|x(t)|2 dt. (2.3)

The receiver observes the filtered and noisy version of x(t) according to (2.1) as

y(t) = h(t) ⇣ x(t) + n(t) =
ÿ

k

x
k

p̃(t ≠ kT
s

) + n(t), (2.4)

where p̃(t) = h(t)⇣p(t) is the convolution of the pulse shape with the channel impulse re-
sponse. A su�cient statistic2 for detecting the symbols x

k

based on y(t) can be obtained
by filtering y(t) with the channel matched filter p̃ú(≠t) and sampling at time instances
t = kÕT

s

, kÕ œ Z [16, Prop. 28.5.2]. Since p̃ú(≠t) = hú(≠t) ⇣ p(≠t), one may interpret
the application of the channel matched filter as a two-step process. The first step (filter-
ing with hú(≠t)) is referred to as “channel equalization” or simply “equalization”. Due
to the assumption that h(t) is an all-pass filter, one may also think of applying hú(≠t)
as a compensation technique3, in the sense that h(t) ⇣ hú(≠t) = ”(t), which is read-
ily seen by applying the Fourier transform and invoking the all-pass filter assumption,
i.e., H(f)Hú(f) = |H(f)|2 = 1. After applying the (pulse) matched filter p(≠t) and
sampling, one finally obtains the discrete-time channel model [16, Prop. 28.5.2 (ii)]

y
k

Õ =
ÿ

k

x
k

R
p

((k ≠ kÕ)T
s

) + n
k

Õ , (2.5)

where R
p

(t) = p(t) ⇣ p(≠t) is the self-similarity (or autocorrelation) function of the
pulse shape [16, Def. 11.2.1] and n

k

Õ is a zero mean Gaussian random variable with
E[N

k

Nú
k

Õ ] = N0R
p

((k ≠ kÕ)T
s

). A discrete memoryless channel y
k

= x
k

+ n
k

is obtained
by choosing the pulse shape such that its self-similarity function R

p

(t) satisfies Nyquist’s
criterion R

p

((k ≠kÕ)T
s

) = ”[k ≠kÕ] [16, Def. 11.3.1], e.g., choosing p(t) to be a root-raised
cosine pulse with an arbitrary roll-o� factor. In this case, the channel from x

k

to y
k

is
completely characterized by the conditional PDF

f
Y

k

|X
k

(y
k

|x
k

) = 1
fiN0

exp
3

≠ |y
k

≠ x
k

|2

N0

4
. (2.6)

On the other hand, if the Nyquist criterion is not fulfilled (or h(t) is not an all-pass filter),
the discrete-time channel model is not memoryless (one may write the first term on the
right-hand side of (2.5) as a discrete convolution) and the noise samples are correlated.
The optimal detection approach in that case is maximum likelihood sequence estimation
(MLSE) either with [17] or without [18] the insertion of a noise whitening filter.

2See [16, Ch. 26] for a formal definition.
3The term “dispersion compensation” is often used instead of “equalization” in the context of fiber-

optical communication systems.
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y(t)single mode fiberx(t)
z

0 L

t

v(t, 0)

t

v(t, L)nonlinear Schrödinger equation

Figure 2.2: Conceptual representation of the signal evolution through a SMF. The NLSE de-
scribes the relationship between the input signal x(t) = u(t, 0) and the output
signal y(t) = u(t, L).

The previous description is relevant to fiber-optical systems for several important rea-
sons. The first one is that, while the actual fiber-optical channel model is nonlinear, the
linear (pulse) modulation and receiver structure in Fig. 2.1 are nonetheless ubiquitously
used in practical fiber-optical systems. Obviously, they are not necessarily optimal any-
more4, but their performance can still be analyzed and seen as a baseline. Secondly, the
previous discussion illustrates how an originally continuous-time channel model (eq. (2.1))
can be simplified to a discrete-time model (eq. (2.5)) which in turn can then be used to
study, e.g., detection algorithms or channel coding schemes. This is the approach taken
in all the appended papers, where the analysis is based on discrete-time channel models.

2.2 The Nonlinear Schrödinger Equation
The starting point for coherent, long-haul fiber-optical channel modeling is the NLSE,
which can be derived from the Maxwell equations under some assumptions that are
appropriate for SMFs [20]. The NLSE is a partial di�erential equation that defines the
input–output relationship for optical baseband signals5 propagating through SMFs.

Let us first, in addition to the time parameter t, introduce a distance parameter 0 Æ
z Æ L that denotes the propagation distance of the signal from the beginning of the fiber,
where L is the total length of the fiber. The baseband signal of interest is then a function
of two parameters, denoted by v(t, z). To be consistent with the previous notation, we
define the input and output signals as x(t) = v(t, 0) and y(t) = v(t, L), i.e., x(t) is the
signal launched into the fiber at z = 0, and y(t) is the signal received after propagating
through an SMF of length L. This is conceptually illustrated in Fig. 2.2. Before we
continue, we also define the instantaneous signal power P (t, z) , |v(t, z)|2 and the power
profile P (z) , lim

T æŒ(
s

T

≠T

P (t, z) dt)/(2T ), where P (0) = P is the power of the input

4 The author in [19, p. 42] goes so far to say that these methods “borrowed from linear system theories,
are inappropriate for communication over optical fiber networks”.

5Often called “slowly varying envelope” in the literature. The carrier frequency is assumed to be the
equivalent of a 1550 nm light wave, corresponding to roughly 193.4 THz.
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2.2 The Nonlinear Schrödinger Equation

signal.
The NLSE accounts for signal attenuation, chromatic dispersion, and nonlinear e�ects

in an SMF and can be written as

ˆv(t, z)
ˆz

= ≠–

2 v(t, z) ≠ ä
—2
2

ˆ2v(t, z)
ˆt2 + ä“v(t, z)|v(t, z)|2, (2.7)

where – is the attenuation coe�cient, —2 is the chromatic dispersion coe�cient, and
“ is the nonlinear Kerr parameter. If we take into account only the first term on the
right-hand side of (2.7), one obtains v(t, z) = exp(≠–z/2)v(t, 0) as a solution6, i.e.,
we immediately see that the signal amplitude in an SMF decays exponentially with
the propagation distance. By defining a renormalized version of v(t, z) as u(t, z) ,
exp(–z/2)v(t, z) and substituting it into (2.7), one obtains an alternative and somewhat
simpler version of the NLSE as [20, eq. (4)]

ˆu(t, z)
ˆz

= ≠ä
—2
2

ˆ2u(t, z)
ˆt2 + ä“e≠–zu(t, z)|u(t, z)|2. (2.8)

Unfortunately, there are no closed-form solutions to the NLSE and one has to use nu-
merical methods in order to solve (2.7) or (2.8).

We proceed by discussing two special cases of (2.8) in Sections 2.2.1 and 2.2.2, for
“ = 0 and —2 = 0, respectively. In both cases, a closed-form solution can be obtained.
These solutions are also the key ingredients for one of the most widely used numerical
methods to solve (2.8), namely, the split-step Fourier method (SSFM), which is described
in Section 2.2.3.

2.2.1 Absence of Nonlinear E�ects
As we will see, when nonlinear e�ects are ignored, the solution of (2.8) can be more
conveniently written as the convolution of the input signal with a dispersive filter. For
“ = 0, (2.8) becomes

ˆu(t, z)
ˆz

= ≠ä
—2
2

ˆ2u(t, z)
ˆt2 , (2.9)

which can be solved analytically by first transforming (2.9) into the Fourier domain7

using the correspondence ˆ

n

ˆt

n

x(t) ¶≠• (ä2fif)nX(f) to obtain [20]

ˆU(f, z)
ˆz

= ≠ä
—2
2 (ä2fif)2U(f, z), (2.10)

6Recall that the solution of ˆf(z)/ˆz = cf(z) is given by f(z) = exp(cz)f(0).
7The solution of (2.9) is sometimes immediately written as u(t, z) = exp(zD̂)u(t, 0) with D̂ = ≠ä

—

2

2

ˆ

2

ˆt

2

.
The operator exp(zD̂) may be interpreted with the help of the Taylor expansion of the exponential
function around 0, i.e., using e

x = 1 + x + x

2

/2 + · · · with x = zD̂.
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Chapter 2 Fiber-Optical Channel Modeling

where U(f, z) •≠¶ u(t, z). The solution of (2.10) can be verified to be

U(f, z) = exp
!
ä2—2fi2f2z

"
U(f, 0) (2.11)

= H(f, z)U(f, 0), (2.12)

where H(f, z) = exp(ä2—2fi2f2z) can be seen as the frequency response of a (z-dependent)
dispersive filter. Applying the inverse Fourier transform to (2.12) finally leads to the
expression

u(t, z) = h(t, z) ⇣ u(t, 0), (2.13)

where h(t, z) = exp
!
ät2/(2—2z)

"
/
Ô

ä2fi—2z ¶≠• H(f, z) is the impulse response of the
filter. We further have |H(f, z)| = 1. In summary, in the absence of nonlinear e�ects,
chromatic dispersion manifests itself as a unit-gain all-pass filter.

2.2.2 Absence of Dispersion
Another special case that allows for an exact and explicit solution of the NLSE is when
chromatic dispersion is completely ignored. In this case, i.e., for —2 = 0, (2.8) becomes

ˆu(t, z)
ˆz

= ä“e≠–z|u(t, z)|2u(t, z). (2.14)

One may then verify that the solution to (2.14) is given by [20, eq. (17)]

u(t, z) = u(t, 0)eä“L

e�

(z)|u(t,0)|2

, (2.15)

where

Le�(z) ,
⁄

z

0
e≠–z

Õ
dzÕ = 1 ≠ exp(≠–z)

–
(2.16)

is the e�ective nonlinear length, where Le�(z) Æ z with Le�(z) æ z as – æ 0.
From (2.15), we see that, for a given z, the nonlinear e�ect by itself causes a phase-

shift of the signal that is proportional to the instantaneous power |u(t, 0)|2, whereas
the amplitude |u(t, z)| = |u(t, 0)| remains unchanged. This e�ect is called self-phase
modulation and an important consequence of its nonlinear nature is that the bandwidth
of u(t, z) may grow during propagation through the fiber.

2.2.3 Split-Step Fourier Method
As was mentioned earlier, the NLSE with “ ”= 0 and —2 ”= 0 cannot be solved analytically
and one has to resort to numerical methods in order to obtain the relationship between
the input and output signals. A popular and computationally e�cient numerical method
is the SSFM which we describe in the following.8

8There exist several di�erent versions of the SSFM and the one presented here is referred to as asym-
metric and non-iterative. For more details we refer the reader to [9, Sec. 2.4.1].
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2.2 The Nonlinear Schrödinger Equation

–, —2, “, L

x(t) y(t)

(a)

repeat M times

x(t) y(t)

eä“L

e�

(�)| · |2

h(t, �)

e≠–�/2

(b)

Figure 2.3: Symbolic representation of an SMF in (a) and an (approximate) mathematical
model via the SSFM in (b). The notation | · |2 stands for the instantaneous power
of the signal arriving at the corresponding multiplication block as indicated by the
dashed, gray line.

Conceptually, we start by discretizing the spatial dimension and subdividing the entire
fiber of length L into small segments of length �, where M = L/� œ N is the total
number of segments. For the ith segment, 1 Æ i Æ M , the input signal is denoted by
u(t, (i ≠ 1)�) and the corresponding output signal by u(t, i�). It is assumed that an
approximate solution to obtain u(t, i�) based on u(t, (i ≠ 1)�) is given by first applying
(2.15) and then (2.13), i.e., for small �, we assert that

u(t, i�) ¥ h(t, �) ⇣
1

u(t, (i ≠ 1)�)eä“L

e�

(�)|u(t,(i≠1)�)|2

2
. (2.17)

Then, an approximate solution for an entire SMF of length L is given by repeatedly apply-
ing (2.17), starting with the first segment i = 1, i.e., with the input signal u(t, 0) = x(t).
The SSFM step in (2.17) is given in terms of the normalized signal u(t, z) and to incor-
porate the signal attenuation, the output signal u(t, i�) is multiplied by exp(≠–�/2) to
obtain v(t, i�) after each step. The resulting numerical method is shown in terms of a
block diagram in Fig. 2.3. In the figure, the notation | · |2 stands for the instantaneous
power of the signal that arrives at the corresponding multiplication block (e.g., |x(t)|2 in
the first segment, |u(t, �) exp(≠–�/2)|2 in the second, and so on). It has been shown
that the above method converges to the true solution for � æ 0 [9, p. 42]. Practical
guidelines on the choice of the segment size are developed in [21].

The name of the method originates from the fact that the nonlinear phase-shift op-
eration and the linear filtering in Fig. 2.3(b) are commonly carried out in the time and
frequency domain, respectively. Therefore, one forward and one inverse Fourier transform
have to be performed per segment. In computer implementations, a sampled version of
x(t) is considered which facilitates the application of the computationally e�cient fast
Fourier transform (FFT). Such an implementation is for example provided in [9, App. B].
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Chapter 2 Fiber-Optical Channel Modeling

2.3 Optical Amplification and Noise
The numerical value of the attenuation coe�cient – is typically between 0.2 and 0.4
dB/km. Assuming – = 0.2 dB/km and a transmission distance of L = 2000 km, the input
signal would be attenuated by 400 dB implying that y(t) is practically zero [2, Sec. IX-
B]. It is therefore necessary to amplify the signal along the transmission path, which
invariably introduces noise into the system.

In this section, we briefly discuss two types of amplification, lumped and distributed,
in terms of their e�ect on the power profile of the signal and the type of noise that
they introduce. Modeling the power profile is important due to the dependency of the
nonlinear e�ect on the instantaneous signal power. Thus, one cannot simply ignore
attenuation e�ects and make a link budget analysis as is common for linear channels.
Details about the underlying physical aspects of optical amplification can be found in
standard textbooks on optical data transmission, e.g., [22, Ch. 6]. It should, however,
be pointed out that the optical amplifier noise is in fact the dominant source of noise in
long-haul systems meaning that noise from other sources, for example thermal noise from
electrical components, is negligible in comparison and can therefore be ignored [2, Sec. IX-
A].

To account for amplification and noise, the NLSE (2.7) can be extended by inserting
a gain profile g(z) and a complex-valued stochastic process w(t, z), resulting in

ˆv(t, z)
ˆz

= ≠– ≠ g(z)
2 v(t, z) ≠ ä

—2
2

ˆ2v(t, z)
ˆt2 + ä“v(t, z)|v(t, z)|2 + w(t, z). (2.18)

Equation (2.18) is referred to as the stochastic nonlinear Schrödinger equation (sNLSE)
[23]. We first discuss the gain profile g(z) and its e�ect on the power profile of the signal
v(t, z), ignoring all other e�ects (including w(t, z)). Both amplification types are applied
periodically, in the sense that the entire transmission distance 0 Æ z Æ L is split up
into spans of length Lsp, varying between 60 and 120 km, where Nsp = L/Lsp œ N is
the total number of spans. In the case of lumped amplification, an optical amplifier,
most often an erbium-doped fiber amplifier (EDFA) [2, Sec. IX-B], is inserted after each
span, where the amplifier gain G matches the power loss of the signal in that span, i.e.,
G = e–L

sp . In (2.18), this is accounted for by setting g(z) = –Lsp
q

N

sp

i=1 ”(z ≠ iLsp).
The corresponding power profile is illustrated in Fig. 2.4(a). The signal power decreases
exponentially according to the loss coe�cient – and is periodically restored to the input
power P after each span. In the case of distributed amplification, it is assumed that the
signal power can be held at an approximately constant level as shown in Fig. 2.4(b). In
order to achieve this, pump waves are launched into the fiber at Raman pump stations
(RPSs) which are located at the beginning and after each span [2, Sec. IX-B]. The
pump waves co-propagate together with the signal v(t, z) and the nonlinear nature of
the fiber is exploited to continuously transfer energy from the pump wave to the signal.
In Fig. 2.4(b), the “realistic” power profile (dashed line) is schematically reproduced
from [24, Fig. 3] and assumes two pump waves per span, one propagating co-directionally
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0 Lsp 2Lsp

P0

z

P (z)
Ã e

≠–z

SMF SMF
EDFA EDFA

(a) lumped

0 Lsp 2Lsp

P0

z

P (z)

realistic

idealized

SMF SMFRPS RPS RPS

(b) distributed

Figure 2.4: Schematic comparison of the power profile as a function of the transmission dis-
tance z for the two considered amplification types.

and one contra-directionally to the signal. From a modeling perspective, the “idealized”
constant profile (solid line) is assumed for simplicity, where g(z) = – and hence the first
term on the right-hand side of (2.18) simply disappears.

Next, we discuss the noise that is generated by the optical amplification schemes
through a process called amplified spontaneous emission (ASE). For lumped amplifica-
tion, noise can be thought of as being added to the signal at discrete locations z

i

, iLsp,
1 Æ i Æ Nsp. Thus, if v(t, z≠

i

) is the output signal after the ith fiber span, the in-
put signal to the next span is given by v(t, z+

i

) = Gv(t, z≠
i

) + n
i

(t), where n
i

(t) is the
additive noise originating from the ith amplifier [19, p. 36]. It has been experimentally
verified that ASE noise can be accurately modeled as circularly symmetric complex Gaus-
sian [2, p. 667] and therefore it remains to specify the autocorrelation function of n

i

(t),
where processes from di�erent amplifiers are uncorrelated. The most common assump-
tion is white Gaussian noise, i.e., E[N

i

(t)Nú
j

(tÕ)] = N
¸

”(t≠tÕ)”[i≠j], where the noise PSD
per amplifier for EDFAs is computed as N

¸

= (G ≠ 1)h‹
s

nsp [2, eq. (54)]. The meaning
and values of the quantities appearing in this expression are summarized in Table 2.1 at
the end of this section. We further set N0 = NspN

¸

in the case of lumped amplification,
which one might think of as the cumulative PSD at the end of the transmission link
for Nsp amplifiers. Since temporally white noise has infinite instantaneous power, this
assumption would, however, lead to infinite phase rotations due to the nonlinear e�ect.
In reality, the noise power is of course finite, and the PSD of ASE noise is comparable to
the gain spectrum of the amplifier. For an idealized EDFA that provides flat gain over
a certain frequency range W

N

, one would then replace ”(t ≠ tÕ) with ”
W

N

(t ≠ tÕ) where
”

W

N

(x) = W
N

sinc(W
N

x) [19]. Further limitations of the optical bandwidth can occur
due to the insertion of optical bandpass filters and/or reconfigurable optical add-drop
multiplexers (ROADMs) along the transmission line [2].

Based on the previous description, a block diagram of a continuous-time model describ-
ing a multi-span transmission link with lumped amplification is depicted in Fig. 2.5(a).
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repeat M times (1 Æ j Æ M)

eä“L

e�

(�)| · |2

h(t, �)

e≠–�/2 G n
i

(t)

repeat N

sp

times (1 Æ i Æ N

sp

)

(a) lumped

repeat M times (1 Æ j Æ M)

eä“�| · |2

h(t, �)

n
i,j

(t)

repeat N

sp

times (1 Æ i Æ N

sp

)

(b) distributed

Figure 2.5: Block diagram for a multi-span link including amplification and noise for (a)
lumped and (b) distributed amplification.

The model consists of the concatenation of the deterministic model for an SMF based on
the SSFM (cf. Fig. 2.3(b)) with a multiplicative gain and additive noise for the optical
amplifier. For completeness, we also indicate how the additive noise terms n

i

(t) can be
related to w(t, z) in (2.18) for lumped amplification. Note that if we neglect all terms on
the right-hand side of (2.18) except w(t, z), we have ˆv(t, z)/ˆz = w(t, z) and integrating
this equation leads to

v(t, z) = v(t, 0) +
z⁄

0

w(t, ›) d› = v(t, 0) + n(t, z). (2.19)

Here, n(t, z) represents the noise that is added to the signal up to a certain distance z.
For lumped amplification, one may set w(t, z) =

q
N

sp

i=1 n
i

(t)”(z ≠ iLsp) [20, p. 84], so that
n(t, z) =

qÂz/L

sp

Ê
i=1 n

i

(t) corresponds the addition of all n
i

(t) up to distance z (the upper
integral limit in (2.19) is interpreted as z+).

Next, we discuss distributed amplification, where ASE noise is continuously added
throughout the entire transmission link. A common assumption is that w(t, z) is a white
Gaussian stochastic process in both time and space, and hence [2, eq. (53)] [19, p. 37]

E [W (t, z)W ú(tÕ, zÕ)] = N̄d”(t ≠ tÕ)”(z ≠ zÕ), (2.20)

where N̄d is the distributed PSD per unit length (in [W/km/Hz]) computed as N̄d =
–h‹

s

K
T

, where K
T

is the photon occupancy factor. Similarly as for lumped amplifica-
tion, we set N0 = LN̄d as the PSD at the end of the entire transmission line of length
L. The expressions for N0 for the two amplification types are related via Nsp = L/Lsp
and letting Lsp æ 0, and replacing nsp with K

T

. Regarding the temporal correlation
of w(t, z), one can make similar arguments as for the lumped case and replace ”(t ≠ tÕ)
with ”

W

N

(t ≠ tÕ) for some W
N

to account for the bandwidth limitation of physically
realistic noise. Under the assumption that w(t, z) is uncorrelated in space, n(t, z) in
(2.19) is a Wiener process, i.e., the integral of a white Gaussian process. As pointed out
in [25, Sec. III], the sNLSE then has to be interpreted via an equivalent integral repre-
sentation (similar to (2.19) but including all terms of (2.18)), since a Wiener process is
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2.4 Channel Models in the Appended Papers

not di�erentiable for any z to satisfy ˆn(t, z)/ˆz = w(t, z). Here, we will ignore such
issues and rely on some intuition to describe how the Wiener process can be included
in the SSFM to numerically solve the sNLSE with distributed noise. In particular, we
assert that the distributed nature of the noise can be accurately captured by adding a
Gaussian stochastic process in each segment of the SSFM. We denote the process that is
added in the jth segment of the ith fiber span by n

i,j

(t), where processes from di�erent
segments and spans are uncorrelated. In order for all MNsp processes n

i,j

(t) to produce
the same PSD as the Wiener process at the end of the link, i.e., N0 = LN̄d, we require
E[N

j,i

(t)Nú
j,i

(tÕ)] = LN̄d/(MNsp)”(t ≠ tÕ). The corresponding block diagram is shown in
Fig. 2.5(b). Compared to the lumped amplification case in Fig. 2.5(a), it can be seen
that the attenuation step is removed (also Le�(�) = �, since – = 0) and an additive
noise term is included in each segment.

All relevant quantities that have been described in this section for the two amplification
types are summarized in Table 2.1.

2.3.1 Linear Regime
We briefly discuss the case where “ = 0 but now including ASE noise from the optical
amplification schemes. To that end, consider again the two block diagrams in Fig. 2.5(a)
and (b). If the nonlinear phase rotations are removed, the model indeed reverts to the
linear dispersive AWGN channel (2.1) (see also Fig. 2.1) for both amplification types. To
see this, first note that the attenuation and gain factors in Fig. 2.5(a) cancel out due to
the linearity of the model. Further, due to the all-pass nature of the dispersive filters,
one may freely rearrange the additive noise terms because filtered noise remains Gaussian
with the same PSD. Thus, we may assume that all noise processes are added together at
the end of the transmission link and the model in fact corresponds to the linear dispersive
AWGN channel in both cases [20, Sec. 5.1]. We have h(t) = h(t, L) (convolving h(t, �)
MNsp times with itself) and n(t) =

q
N

sp

i=1 n
i

(t) and n(t) =
q

N

sp

i=1
q

M

j=1 n
i,j

(t) for lumped
and distributed amplification, respectively.

2.4 Channel Models in the Appended Papers
2.4.1 Paper A: Zero-Dispersion Fiber, Single Polarization
In Paper A, we consider the special case where dispersive e�ects are absent, i.e., —2 = 0,
in combination with a distributed amplification scheme. In Section 2.2.2, it has already
been shown that it is possible to find an analytical solution for the (deterministic) NLSE if
—2 = 0. When ASE noise from optical amplifiers is also considered, the signal and noise
interact through the fiber nonlinearity and give rise to the phenomenon of nonlinear
phase noise (NLPN). Fortunately, it turns out that an exact analytical characterization
of a discrete-time channel model can still be found. We proceed by first describing how
the discrete-time channel is obtained from the continuous-time channel. Based on this
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Table 2.1: Comparison of amplification types

quantity meaning lumped distributed

g(z) gain profile –Lsp
q

N

sp

i=1 ”(z ≠ iLsp) –

w(t, z) added to ˆv(t, z)/ˆz
q

N

sp

i=1 n
i

(t)”(z ≠ iLsp) white Gaussian

n(t, z)
s

z

0 w(t, ›) d›
qÂz/L

sp

Ê
i=1 n

i

(t) Wiener process

E [W (t, z)W ú(tÕ, zÕ)] - N
¸

”(t ≠ tÕ)
q

N

sp

i=1 ”(z ≠ iLsp)”(zÕ ≠ iLsp) N̄d”(t ≠ tÕ)”(z ≠ zÕ)

E[N(t, z)Nú(tÕ, zÕ)] - N
¸

”(t ≠ tÕ) min(Âz/LspÊ, ÂzÕ/LspÊ) N̄d”(t ≠ tÕ) min(z, zÕ)

N0 PSD after distance L NspN
¸

= Nsp(e–L

sp ≠ 1)h‹nsp LN̄d = NspLsp–h‹K
T

F
n

amplifier noise figure typically 4–7 dB -

nsp spontaneous emission factor F
n

(1 ≠ G≠1)≠1/2 -

K
T

photon occupancy factor - ¥ 1.13 (at room temp.)

h Planck’s constant 6.626 · 10≠34 [Js]

‹
s

optical carrier frequency 1.936 · 1014 [Hz]
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repeat K times (1 Æ i Æ K)linear modulation sampling receiver

x
k

kT

s

p(t)

eä“�| · |2

x(t)

n
i

(t)
k

Õ
T

s

y(t)
y

k

Õ

Figure 2.6: Block diagram of the transmission system considered in Paper A. Note that the
absence of a filter front-end at the receiver means that the noise bandwidth is
implicitly assumed to be limited due to inline optical filters.

discrete-time channel, an analytical expression for the conditional PDF is presented,
which is essentially the starting point for the discussions in Paper A.

For the case of distributed amplification and in the absence of dispersion, the sNLSE
(2.18) reduces to

ˆv(t, z)
ˆz

= ä“v(t, z)|v(t, z)|2 + w(t, z). (2.21)

A block diagram of the corresponding continuous-time channel model (via the SSFM)
is then derived from Fig. 2.5(b) by simply removing the dispersive filters. A discrete-
time channel model can be obtained by assuming a conventional linear pulse modulation
(cf. Fig. 2.1) in combination with a sampling receiver. The resulting block diagram
depicting this scenario is shown in Fig. 2.6. For simplicity, and to make the notation
consistent with Paper A, we have replaced the double enumeration over segments and
spans with a single enumeration over 1 Æ i Æ K = MNsp.

Due to the absence of a filter prior to sampling the received signal y(t) (see Fig. 2.6), it is
implicitly assumed that the noise bandwidth W

N

is somehow limited during propagation,
e.g., through inline optical filters (otherwise the samples y

k

Õ would have infinite variance)
[26]. Furthermore, due to the absence of a matched filter (matched to the pulse shape),
the pulse p(t) itself rather than the self-similarity function of the pulse R

p

(t) needs to
fulfill the Nyquist criterion p(kT

s

) = ”[k], e.g., one may assume sinc pulses.
It is important to point out that the step from continuous-time to discrete-time is not

necessarily optimal, i.e., the samples y
k

Õ do not necessarily form a su�cient statistic for
detecting x

k

based on y(t). Therefore, statements about optimality (e.g., “ML detec-
tion”) are implicitly understood with respect to the discrete-time channel only, not with
respect to the actual waveform channel.

The channel from the transmitted symbols to the received samples is memoryless
and the indices can hence be dropped, i.e., x and y denote the (complex-valued) channel
input and output, respectively. The system model presented thus far has been extensively
studied in the literature and there exist several di�erent derivations of the conditional
PDF f

Y |X(y|x), some of which we mention in the following in chronological order.

• Gordon and Mollenauer were the first to recognize that the interaction between
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Chapter 2 Fiber-Optical Channel Modeling

the signal and inline amplifier noise leads to a phase noise e�ect [27] and NLPN is
sometimes referred to as the Gordon–Mollenauer e�ect.

• Their model was made rigorous by Mecozzi in [23] and later in [28].

• In [29], Turitsyn et al. proposed a technique to derive the PDF based on the Martin–
Siggia–Rose formalism from statistical mechanics. It was also recognized that the
capacity of the discrete channel grows unbounded with input power.

• Ho provided an in-depth treatment on the subject of NLPN including a derivation
of the PDF based on characteristic functions [10, Ch. 5], see also [30].

• Most recently, Yousefi and Kschischang have considered the zero-dispersion case in
a series of papers [25,26,31,32]. They provide several additional derivations of the
PDF based on a sum-product and a Fokker–Planck di�erential equation approach.

The PDF is given as follows. Adopting a polar notation for the channel input and
output including a magnitude normalization with ‡2

d = LN̄dW
N

= N0W
N

according to
x/‡d = r0eä◊

0 and y/‡d = reä◊, one may write the PDF in the form of a Fourier series
as9

f�,R|�
0

,R

0

(◊, r|◊0, r0) = 1
2fi

ÿ

kœZ
C

k

(r, r0)eäk(◊≠◊

0

), (2.22)

where the Fourier coe�cients are given by

C
k

(r, r0) = 2z
k

sin z
k

r exp
3

≠ r2 + r2
0

(tan z
k

)/z
k

4
I
k

3
2z

k

sin z
k

rr0

4
, (2.23)

where I
k

( · ) is the modified Bessel function of the first kind and z
k

=


ä“k‡2
d. The

singularities for z0 = 0 are understood to be resolved as (sin 0)/0 = 1 and (tan 0)/0 = 1.
Since the PDF is a real function, the symmetry condition C

k

(r, r0) = C≠k

(r, r0) holds.
The zero-dispersion assumption can be motivated by the fact that the dispersion co-

e�cient —2 can be physically engineered to take on values over a certain range including
(approximately) zero. However, this scenario is generally assumed to be unrealistic due
to the severe spectral broadening that may occur during propagation. For example, in [2]
the authors state that “the zero dispersion region is generally to be avoided as the ef-
fects of fiber nonlinearity are enhanced dramatically”. Similarly, in [20] it is noted that
“the zero-dispersion regime is not practical for communications”. A discussion about this
topic can also be found in [26, Sec. VIII].

The model can nonetheless be useful since the assumption of zero dispersion is some-
times fulfilled, at least approximately, in dispersion-managed (DM) transmission links.

9The joint density of the magnitude and phase of a complex random variable with density f

Y

(y) can
be obtained via f

�,R

(◊, r) = rf

Y

(re

ä◊) [16, Lem. 17.3.5].
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These links consist of the concatenation of a standard SMF with a dispersion compensat-
ing fiber (DCF) whose dispersion coe�cient —Õ

2 has been engineered to be of opposite sign,
i.e., sgn(—Õ

2) = ≠sgn(—2). If the length of the DCF LÕ
sp is matched to the length of the

standard fiber Lsp according to the simple linear relation |—2|Lsp = |—Õ
2|LÕ

sp, then the net
e�ect of the dispersion after distance Lsp+LÕ

sp is zero (neglecting nonlinear e�ects). To see
this, consider the concatenation of two dispersive filters H(f, Lsp) = exp(ä2—2fi2f2Lsp)
(cf. (2.10)) and H Õ(f, LÕ

sp) = exp(ä2—Õ
2fi2f2LÕ

sp) which exactly cancel in this case. If
nonlinear e�ects are taken into consideration for such DM links, the accuracy of the
zero-dispersion model depends essentially on the symbol rate R

s

and lengths Lsp and
LÕ

sp. In general, the lower the symbol rate and the shorter the fibers, the more accurate
is the model.

2.4.2 Paper B: Zero-Dispersion Fiber, Polarization Multiplexing
In Paper B, we study an extension of the model used in Section 2.4.1 which was recently
derived in [33]. The model takes into account PM transmission, where both polarizations
of the light are used to transmit data. For PM transmission, the sNLSE equation can be
further extended by considering the vector signal v(t, z) = (v

a

(t, z), v
b

(t, z))|, where the
indices indicate the signals in the two polarizations a and b.10 The resulting equation is
referred to as the Manakov equation including loss and gain terms and amplifier noise
and is given by [34, p. 8]

ˆv(t, z)
ˆz

= ≠– ≠ g(z)
2 v(t, z) ≠ ä

—2
2

ˆ2
v(t, z)
ˆt2 + ä“v(t, z)Îv(t, z)Î2 + w(t, z), (2.24)

where w(t, z) = (w
a

(t, z), w
b

(t, z))| are two (independent) stochastic processes describing
the ASE noise generated in both polarizations. The major di�erence between (2.24) and
(2.18) is that (2.24) models the nonlinearity that is due to the sum of the instantaneous
power in both polarizations Îv(t, z)Î2 = P

a

(t, z)2 + P
b

(t, z)2. We should mention that
(2.18) ignores the fact that amplifier noise is always generated “in two polarizations”, i.e.,
even if we assume one of the two signals in v(t, z) to be zero (as was done in Section 2.3),
technically the amplifier noise in that polarization still contributes via (2.24) through the
fiber nonlinearity.

The derivation presented in [33] makes similar assumptions as in, e.g., [10, 23, 26, 29]
for the continuous-to-discrete time conversion and the subsequent analysis. In particular,
dispersive e�ects are ignored. This also includes polarization mode dispersion (PMD),
which would cause di�erent group velocities of the signals in polarization a and b because
of natural imperfections and asymmetries of the fiber cross-section area. The simplified
Manakov equation for distributed amplification and neglecting all dispersive e�ects is

10This nonstandard notation for the polarizations is an attempt to avoid confusion with the transmit
and received signals. However, we acknowledge inconsistent notation with respect to Paper B, where
the polarizations are denoted by x and y.
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Figure 2.7: Block diagram of the transmission system considered in Paper B.

obtained from (2.24) as

ˆv(t, z)
ˆz

= ä“v(t, z)Îv(t, z)Î2 + w(t, z). (2.25)

Again, noise is assumed to be bandlimited and a discrete channel is obtained based on
samples that are taken at the receiver at a rate 1/T

s

in both polarizations. A block dia-
gram of the assumed transmission system including a graphical representation of (2.25)
via the SSFM is shown in Fig. 2.7. It can be seen that there are essentially two SP
transmission systems which are now coupled due to the fiber nonlinearity (and hence
uncoupled when “ = 0).

As for the SP case, the discrete-time model is memoryless. Dropping the discrete-time
indices, the joint input and output in both polarizations are denoted by y = (y

a

, y
b

)|
and x = (x

a

, x
b

)|, respectively. A notation based on polar coordinates with the same
normalization as before is preferable and we therefore set x

a

/‡d = r0a

eä◊

0a , x
b

/‡d =
r0b

eä◊

0b , y
a

/‡d = r
a

eä◊

a , y
b

/‡d = r
b

eä◊

b , and collect the corresponding transmitted and
received magnitudes and phases in the vectors r0 = (r0a

, r0b

)|, r = (r
a

, r
b

)|, ◊0 =
(◊0a

, ◊0b

)|, ◊ = (◊
a

, ◊
b

)|. Using this notation, the conditional PDF is given in the form
of a two-dimensional Fourier series as

f�,R|�
0

,R
0

(◊, r|◊0, r0) = 1
4fi2

ÿ

k

a

œZ

ÿ

k

b

œZ
Ck(r, r0)eäk(◊≠◊

0

), (2.26)

where k = (k
a

, k
b

)| and the Fourier coe�cients are

Ck(r, r0) =
3

2zk

sin zk

42
r

a

r
b

exp
3

≠ÎrÎ2 + Îr0Î2

(tan zk)/zk

4
I
k

a

3
2zk

sin zk
r

a

r0a

4
I
k

b

3
2zk

sin zk
r

b

r0b

4
,

(2.27)

with zk =


ä“(k
a

+ k
b

)‡2
d. Since the PDF is a real function, the Fourier coe�cients

satisfy the symmetry condition Ck(r, r0) = C≠k(r, r0).
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Visualizing such a four-dimensional PDF can be di�cult and we make an attempt by
showing various scatter plots further below and in Paper B. When showing a scatter
plot of the received points in only polarization a, one is e�ectively showing a particle
representation of the marginal distribution

f�
a

,R

a

|�
0

,R
0

(◊
a

, r
a

|◊0, r0) =
⁄ 2fi

0

⁄ Œ

0
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0

,R
0

(◊, r|◊0, r0) dr
b
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b

(2.28)
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= 1
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ÿ

k

a

C̃
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a

(r
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, r0)eäk

a

◊

a , (2.30)

where the modified Fourier coe�cient for the above marginal PDF is [33]
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Due to symmetry, the polarizations a and b have the same marginal distributions. Also,
the above distributions are conditioned on a given symbol in both polarizations.

In Paper B, we restrict ourselves to M -PSK with the same power in both polarizations
in order to simplify the detection problem.

2.4.3 Paper C: Non-Dispersion-Managed Links with a Linear Receiver
For Paper C, we consider PM transmission without neglecting dispersive e�ects that are
due to —2 (we do, however, neglect PMD). The optical transmission link consists of the
periodic concatenation of a standard SMF and an EDFA (i.e., a lumped amplification
scheme) and there is no optical inline dispersion compensation through DCFs. A block
diagram of this setup is shown in Fig. 2.8. The transmitters (TX) employ a linear pulse
modulation according to x

a

(t) =
q

k

x
a,k

p(t ≠ kT
s

) for polarization a and similarly for
polarization b. The evolution of the PM signal is described by the Manakov equation
(2.24). The received signal in each polarization is processed according to the linear
matched filter receiver shown in Fig. 2.1. For polarization a, this amounts to passing
y

a

(t) through an equalizer, a pulse-matched filter, and a sampler, to obtain y
a,k

Õ =
y

a

(t) ⇣ h(t, ≠L) ⇣ p(≠t)|
t=k

Õ
T

s

and similarly for polarization b.
Characterizing the statistical relationship between the transmitted symbols and re-

ceived samples is a challenging task due to the complicated interaction of the signal with
itself, the noise, and the signal in the orthogonal polarization. The crucial di�erence
with respect to the setup in Paper A and Paper B is the presence of dispersive filtering
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Figure 2.8: Block diagram of the PM transmission scheme considered in Paper C.

e�ects throughout the signal propagation. Optical transmission links without any inline
dispersion compensation are referred to as non-DM or uncompensated transmission links.
Recently, there has been a substantial amount of work on these types of transmission
links with the goal to find such a statistical relationship [35–38].11

In [35], it is shown that the discrete-time channel for non-DM links is well modeled by
a circularly symmetric complex additive Gaussian channel including a complex scaling
factor. In the derivation of the model, the assumption is that dispersive e�ects are
dominant (i.e., the symbol rate is high enough) and that the nonlinear e�ects are not too
strong. The complex scaling accounts for a constant phase o�set as well as the fact that
part of the signal is converted into noise-like interference through the interaction between
the dispersive and nonlinear e�ects. For simplicity, it is then assumed that the nonlinear
noise is additive, Gaussian, and uncorrelated (both in time and across polarizations).
Thus, the discrete-time channel model in polarization a is given according to

y
a

= ’x
a

+ n
a

+ ñ
a

, (2.33)

where ’ œ C is a complex scaling factor, n
a

corresponds to the linear ASE noise with
E[N

a

Nú
a

] = N0/T
s

, and ñ
a

accounts for nonlinear noise with E[Ñ
a

Ñú
a

] = ÷P 3, where the
same transmit power P is assumed for both signals in the two polarizations. ÷ (and
hence the nonlinear noise variance) is a function of the link parameters and the symbol
time, i.e., ÷ = f(–, —2, “, Lsp, Nsp, T

s

) [35, eq. (15)], and |’|2 = 1 ≠ |÷|P 2.
The main di�erence with respect to a “conventional” discrete-time additive Gaussian

channel is that the signal-to-noise ratio (SNR) (defined as the ratio of the input power
to the additive noise power) is not su�cient to characterize the operating point of the
channel but rather one needs to consider the pair (P, PASE) or, more practically relevant,
the pair (P, L). This parameter pair in turn leads to both a linear and a nonlinear noise
variance based on which an e�ective SNR can be computed.

11These links are also of high practical relevance and according to [36], “the current consensus is that
green-field installations, as well as major overhauling and refurbishing of existing links, should adopt
uncompensated transmission.”
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2.4.4 Comparison
In order to illustrate the previously described models, we show scatter plots of the re-
ceived symbols for di�erent combinations of input power P and transmission distance L

in Fig. 2.9. The transmitted symbols are taken uniformly at random from the 16-QAM
signal constellation. For Fig. 2.9(a) and (b), we use the same link parameters as in Paper
A. However, when generating the scatter plots shown in Fig. 2.9(a), we take into account
the noise in both polarizations. In fact, the gray points in Fig. 2.9(a) correspond to the
received symbols in the unused polarization and hence they represent only the noise. The
scatter plots along diagonals in Fig. 2.9 correspond to the same signal-to-additive-noise
ratio. For Fig. 2.9(c), we use the same parameters as in Paper C. We caution the reader
that a quantitative comparison between the scatter plots shown for the models in Paper
A/B and C is not fair due to the di�erent link parameters and amplification schemes.
Furthermore, spectral considerations are not reflected in the scatter plots. For example,
operating at high input power and transmission length seems feasible for the memoryless
models, since the phase is predominantly distorted. However, in this transmission regime
severe spectral broadening of the signal is to be expected. Also, for the PM transmission
shown in Fig. 2.9(b), the nonlinear phase rotation in one polarization depends on the
selected point in the other polarization. Therefore, the noise clouds at high input power
begin to separate into three smaller clouds, where each cloud corresponds to a di�erent
magnitude of the transmitted symbol in the orthogonal polarization.

From Fig. 2.9(c), it can be observed that the Gaussian noise assumption for the nonlin-
ear interference appears to be valid for a wide range of transmission parameters. For the
scatter plot in the lower right corner, is seems that the outer symbols are more a�ected
by phase noise rather than circularly symmetric Gaussian noise, which can be explained
by the fact that the transmission distance (two fiber spans) is relatively short.

2.5 Further Reading
In this chapter, we have presented an overview of the basic concepts regarding fiber-
optical channel modeling for long-haul data transmission. However, there are many
important issues that have not been addressed, some of which we briefly mention in this
section.

One important topic is the study of wavelength-division multiplexing (WDM) systems,
where many input signals are multiplexed in the frequency domain at di�erent carrier
frequencies and simultaneously transmitted over the fiber. In this case, the underlying
channel model, i.e., the sNLSE together with the corresponding block diagrams via the
SSFM in Fig. 2.5, are still valid. However, nonlinear e�ects may be more pronounced
due to the additional input power. Furthermore, it was mentioned in the beginning of
this chapter that the matched filter receiver can be seen as a baseline. The develop-
ment of improved receiver structures is an active area of research. For example, digital
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Figure 2.9: Comparison of scatter plots for di�erent combinations of input power P and trans-
mission length L.
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Figure 2.9: (cont.)

backpropagation (DBP) can be employed to improve performance, which is based on the
invertibility of the Schrödinger equation in the absence of noise. In [39, 40], the authors
extend DBP via a factor-graph approach showing significant improvements over DBP for
DM links in the nonlinear operating regime. In [41, 42], di�erent detection approaches
are compared, with a focus on MLSE. In [19], a new transmission scheme based on the
nonlinear Fourier transform is proposed.

We have also ignored hardware imperfections, e.g., laser phase noise, which might
potentially have a significant impact on the discrete-time channel model that should be
used to design practical modulation and coding schemes.
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CHAPTER 3

Bit-Interleaved Coded Modulation with Low-Density Parity-Check
Codes

In this chapter, we provide a brief introduction on how to reliably transmit data at
high spectral e�ciencies. Spectrally e�cient communication can be achieved in practice
by combining forward error correction with higher-order signal constellations, which is
commonly referred to as coded modulation (CM). We focus on bit-interleaved coded
modulation (BICM), which is a pragmatic approach to CM and often implemented in
practice, due to its inherent simplicity and flexibility. This chapter should be seen mainly
as supplementary material for the problem statement that is addressed in Paper C, where
it is assumed that the reader is somewhat familiar with coding theory and iterative
decoding techniques.

We start by outlining the main principles behind coded modulation in Section 3.1. In
Section 3.2, we explain the building blocks of a BICM system. In Section 3.3, we review
some basic concepts behind LDPC codes and iterative decoding, focusing on protograph-
based codes. We also briefly cover SC-LDPC codes, which are one of the code classes
considered for the problem statement addressed in Paper C.
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3.1 Introduction
Consider again the discrete memoryless AWGN channel y

k

= x
k

+ n
k

(see Section 2.1),
where x

k

œ C is the channel input at time instant k, y
k

is the corresponding channel
output, and n

k

is the realization of a zero-mean, circularly symmetric complex Gaussian
random variable N

k

with E[|N
k

|2] = PN. The channel input is assumed to satisfy the
average power constraint E[|X

k

|2] = P and the SNR is given by SNR = P/PN. The goal
is to reliably transmit data at high spectral e�ciencies over this channel. To do so, one
can formally define an encoder E : {0, 1}d æ Cc, which maps a vector of d information
bits to a codeword in the code Cc µ CN . Each codeword is a complex vector of length
N and its components serve as the input for N consecutive uses of the AWGN channel.
Similarly, one can define a decoder D : CN æ {0, 1}d, which maps a vector of N channel
outputs back to a sequence of d estimated bits. Assuming equally likely information
bits, the communication rate (measured in [bits/complex symbol]) of such a system is
given by Ÿ = log2(|Cc|)/N = d/N . Notice that the communication rate of the discrete
channel (in [bits/complex symbol]) is intimately related to the spectral e�ciency of the
continuous-time channel (in [bits/s/Hz]) via the bandwidth of the pulse shape p(t) and
the symbol rate. Shannon proved that all rates up to the channel capacity

C = log2(1 + SNR) (3.1)

are achievable, in the sense that there exists an encoder/decoder pair that can provide
an arbitrarily small error probablitity as long as N æ Œ [43].

While Shannon’s proof provides communication engineers with an invaluable bench-
mark, the problem of designing practical encoders and decoders that operate close to the
capacity and are implementable with reasonable complexity was not directly addressed
by Shannon. In practical systems, the channel input x

k

commonly does not take on
arbitrary complex values, but is constrained to a discrete signal constellation X µ C.
Given this premise, it is useful to introduce a soft dividing line between two di�erent
operating regimes for this channel. This dividing line is at Ÿ = 2, where Ÿ < 2 is referred
to as the power-limited regime and Ÿ > 2 as the bandwidth-limited regime [15]. Roughly
speaking, in the power-limited regime, it is su�cient to consider a binary modulation,
independently in the real and imaginary part (e.g., Gray-labeled quadrature phase-shift
keying (QPSK) according to X = {1 + ä, 1 ≠ ä, ≠1 + ä, ≠1 ≠ ä} and scaled by


P/2), in

combination with binary error correction codes in order to operate close to the capacity.
On the other hand, spectrally e�cient communication, i.e., Ÿ > 2, requires the use of sig-
nal constellations with cardinality larger than 4, which are referred to as higher-order1

constellations. By invoking the capacity formula, it follows directly that operating at
high spectral e�ciencies Ÿ > 2 requires the signal power to be at least three times the
noise power. In other words, spectrally e�cient communication requires a reasonably
high SNR.

1One may also classify complex constellations with 4 points as “higher-order”, as long as they cannot
be viewed as two independent binary modulations per real and complex dimension.
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Figure 3.1: Two examples of higher-order signal constellations with 16 points.

Devising practical encoder/decoder pairs where x
k

is constrained to a higher-order
signal constellation is commonly referred to as CM design. There exist several di�er-
ent approaches, for example trellis coded modulation (TCM) [44], CM with nonbinary
codes [45], multilevel coded modulation (MLCM) [46], or BICM [47]. Our focus is on
BICM in combination with (binary) LDPC codes, which is one of the most popular
capacity-approaching coding schemes for achieving high spectral e�ciency, due to its
simplicity and flexibility [48]. BICM is employed as the de-facto standard in many wire-
less communication standards and has also been studied by many authors for fiber-optical
communication systems, see, e.g., [49] or [50] and references therein.

3.2 BICM System Model
The transmitted symbols x

k

in each time instant k are assumed to take on values from
a discrete signal constellation X µ C with |X | points, where |X | is a power of two.
Furthermore, each point in the constellation is assumed to be labeled with a unique
binary string of length m = log2 |X |, where b

i

(a), 1 Æ i Æ m, denotes the ith bit in the
binary string assigned to a œ X (counting from left to right). Two examples of signal
constellations with |X | = 16 points are shown in Fig. 3.1 and referred to as 16-quadrature
amplitude modulation (QAM) and (8, 8)-amplitude phase-shift keying (APSK). For a
detailed definition of APSK constellations, we refer the reader to Paper A.

In the following, we describe the main components of a BICM system. First, consider
the block diagram shown in Fig. 3.2(a), where the modulo 2 addition of d

i,k

and multi-
plication by d̄

i,k

= (≠1)d

i

k are explained further below and can be ignored for now. At
each time instant, the modulator � takes m bits b

i,k

, 1 Æ i Æ m, and maps them to one
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Figure 3.2: The modulator �, demodulator �≠1, and channel symmetrization technique in
(a). A helpful approximate channel model via parallel symmetric Gaussian LLR
channels in (b).

of the constellation points according to the binary labeling of the signal constellation.
At the receiver, the demodulator �≠1 computes soft reliability information about the
transmitted bits in the form of the log-likelihood ratios (LLRs)

l
i,k

, log
f

Y

k

|B
i,k

(y
k

|0)
f

Y

k

|B
i,k

(y
k

|1) = log
q

xœX
i,0

f
Y

k

|X
k

(y
k

|x)
q

xœX
i,1

f
Y

k

|X
k

(y
k

|x) , (3.2)

where X
i,u

, {a œ X : b
i

(a) = u} is the subconstellation where all points have the bit u

at the ith position of their binary label. The LLR is a function of the observation, and,
since the observation is a random variable, the LLR is also a random variable.

One way to interpret the setup depicted in Fig. 3.2(a) is as follows. The concatenation
of the modulator �, the AWGN channel, and demodulator �≠1 establishes a binary
interface for the complex-valued AWGN channel. It is useful to imagine transmitting
data over a set of m parallel binary-input continuous-output channels, or simply bit
channels, where one may view the conditional distribution of the LLR f

L

i,k

|B
i,k

( · | · ),
1 Æ i Æ m, as a bit channel. In the following, a bit channel f

L|B(l|b) is called symmetric if
f

L|B(l|0) = f
L|B(≠l|1) and referred to as an LLR channel if f

L|B(l|0)el = f
L|B(l|1). The

terminology here is used to emphasize that, if the second condition is fulfilled, the output
of the channel corresponds to a “true” LLR. This is important because, in practice, low-
complexity approximations of (3.2) are often considered, and the resulting bit channel
in that case is not necessarily an LLR channel. One can show that f

L

i,k

|B
i,k

( · | · ) is an
LLR channel. However, the channel is not necessarily symmetric in general.2 Symmetry
can be enforced by adding modulo 2 independent and identically distributed bits d

i,k

to the bits b
i,k

[51]. After the demodulator, the corresponding LLR is multiplied by
d̄

i,k

= (≠1)d

i,k , which implies that the bits d
i,k

are known to both the transmitter and
receiver. The resulting bit channel f

L

i,k

|B
i,k

( · | · ) can be shown to be symmetric.
We proceed by quantifying the quality of the m bit channels, where we rely on the

mutual information (MI) as a measure of quality. The MI between the output of a
2The symmetry condition will become important when discussing density evolution and LDPC codes,

where one relies on the all-zero codeword assumption.
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symmetric LLR channel f
L|B(l|b) and uniform input bits is given by

I(L; B) = E
5
log2

3
f

L|B(L|B)
f

L

(L)

46
(3.3)

= 1 ≠ E
5
log2

3
f

L|B(L|B) + f
L|B(L|1 ≠ B)

f
L|B(L|B)

46
(3.4)

= 1 ≠ E
5
log2

3
1 +

f
L|B(L|1 ≠ B)
f

L|B(L|B)

46
(3.5)

= 1 ≠ E
#
log2

!
1 + exp((≠1)1≠BL)

"$
(3.6)

= 1 ≠
⁄ +Œ

≠Œ
f

L|B(l|0) log2(1 + exp(≠l)) dl. (3.7)

Writing the MI in the form (3.7) can be useful in order to compute the MI with the help
of Monte Carlo integration.

It turns out that, while the channel quality of the bit channels can be determined quite
e�ciently, it is very di�cult to find exact analytical expressions for the actual densities
f

L

i,k

|B
i,k

( · | · ). A common approach in the analysis of BICM is to make the simplify-
ing assumption that the densities f

L

i,k

|B
i,k

( · | · ) are approximately Gaussian. An LLR
channel with a Gaussian density is particularly simple, because it can be parametrized
by a single parameter. More precisely, we refer to a bit channel f

L|B(l|b) as a symmetric
Gaussian LLR channel with parameter ‡2 if L ≥ N (‡2/2, ‡2) conditioned on B = 0
and L ≥ N (≠‡2/2, ‡2) conditioned on B = 1. The MI between the output of a sym-
metric Gaussian LLR channel and uniform input bits is denoted by J(‡). Under the
Gaussian assumption, a helpful approximation of the setup in Fig. 3.2(a) is shown in
Fig. 3.2(b), where transmission takes place over m parallel symmetric Gaussian LLR
channels with di�erent parameters ‡2

i

. In order to find a correspondence between the
LLR channels f

L

i,k

|B
i,k

( · | · ) and the parameters ‡2
i

, one may match the MI according to
J(‡

i

) = I
i

(SNR) … ‡2
i

= J≠1(I
i

(SNR))2, where I
i

(SNR) = I(B
i,k

; L
i,k

) is independent
of k.

While the parallel Gaussian model can be quite useful, one should, however, be aware
of the inaccuracies of this simplified model. In particular, the bit channels are not
independent as suggested in Fig. 3.2(b) and the true distribution of the LLRs is not
Gaussian. To illustrate the latter inaccuracy, in Fig. 3.3, we compare the actual densities
with the approximated Gaussian densities for two di�erent SNRs for the first two bit
positions of the 16-QAM constellation shown in Fig. 3.1(a).3 The densities f

L

i,k

|B
i,k

( · |0)
are estimated via histograms and shown by the solid lines, whereas the Gaussian densities
are shown by the dashed lines. It can be seen that the actual densities are clearly
non-Gaussian and the accuracy of the Gaussian approximation therefore depends on the
application scenario. For the application in Paper C (predicting the iterative performance

3The third and fourth bit positions lead to identical distributions, due to the fact that 16-QAM with
the shown labeling can be seen as a product constellation of two one-dimensional constellation.
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Figure 3.4: A useful approximate system model for BICM systems.

behavior of LDPC codes), the approximation is quite accurate and at the same time
allows for a major simplification of the analysis, thereby justifying its use.

Consider now the case where we employ a single binary code C µ {0, 1}n of length n,
and each codeword is transmitted using N = n/m symbols x

k

. The allocation of the
coded bits to the modulator (i.e., the di�erent bit channels in Fig. 3.2(b)) is determined
by a bit mapper as shown in Fig. 3.4. In Paper C, our goal is to find good bit mappers
for a given code and signal constellation, where we focus on protograph-based LDPC
codes.

As a side note, we remark that the term “bit interleaver” is also commonly used instead
of “bit mapper”. In fact, the modulator � is sometimes referred to as the (symbol)
mapper (and the demodulator �≠1 as the demapper), which the reader should be aware
of in order to avoid confusion. However, the terms “bit mapper”, “bit mapping”, or
“mapping” seem to be preferred in the literature when the allocation of the coded bits to
the constellation symbols � is explicitly studied or optimized, see, e.g., [52,53]. Moreover,
outside the context of BICM, the terms “mapping device” or “channel mapper” are used
when studying parallel channels in combination with binary codes, e.g., in [54,55].
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copy permute

Figure 3.5: Illustration of the protograph lifting procedure for P = (3, 3) and M = 6.

3.3 Low-Density Parity-Check Codes
LDPC codes were proposed by Gallager in his PhD thesis [56]. They were conceived
as practically decodable codes, able to “utilize the long block lengths necessary for low
error probability without requiring excessive equipment or computation” [57]. Formally, a
binary LDPC code C of length n is defined as the null space of a sparse parity-check matrix
H = [h

i,j

] œ {0, 1}c◊n, i.e., C = {c œ {0, 1}n : Hc

| = 0}, where n > c and operations are
over the binary field. Assuming that H has full rank c, one can invoke the fundamental
theorem of linear algebra to infer that the code has |C| = 2d codewords, where d = n ≠ c

is the dimension of the code. The code rate is defined as R = d/n = 1 ≠ c/n.

3.3.1 Construction via Protographs
There exist di�erent methods to construct “good” LDPC codes, i.e., good matrices H,
and one popular method is by using protographs [58]. The parity-check matrix of an
LDPC code can be represented by using a bipartite Tanner graph consisting of n variable
nodes (VNs) and c check nodes (CNs), where the ith CN is connected to the jth VN if
h

i,j

= 1. A protograph is also a “small” bipartite graph defined by an adjacency matrix
P = [p

i,j

] œ Nc

Õ◊n

Õ

0 , called the base matrix. Given P, a parity-check matrix H is obtained
by replacing each entry p

i,j

in P with a random binary M -by-M matrix which contains
p

i,j

ones in each row and column. This procedure is called lifting and M Ø max
i,j

p
i,j

is the lifting factor. Graphically, it amounts to copying the protograph M times and
subsequently permuting edges, in order to obtain the Tanner graph. Parallel edges, i.e.,
for p

i,j

> 1, are permitted in the protograph and are resolved in the lifting procedure.
The design rate of the code is given by R = 1 ≠ c/n = 1 ≠ cÕ/nÕ, where c = cÕM and
n = nÕM . As an example, the lifting procedure for P = (3, 3) and M = 6 is illustrated
in Fig. 3.5.

Designing codes via protographs has several practical advantages, e.g., a quasi-cyclic
code construction is easily applied by constraining the M -by-M matrices to have a cir-
culant structure which in turn allows for hardware-e�cient implementation [59, p. 263],
suitable for high-speed optical communications [6]. Moreover, codes of di�erent lengths
can be obtained simply by adjusting the lifting factor.
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Figure 3.6: Illustration of the messages involved in the iterative BP decoding algorithm.

3.3.2 Iterative Belief Propagation Decoding
Consider the scenario where each bit in the codeword is transmitted over an LLR channel
f

L|B( · | · ). The goal of the decoder is to recover the transmitted codeword based on the
observation from the channel, which consists of n LLRs. These LLRs can be interpreted
as the initial belief about each coded bit. During the decoding process, the decoder tries
to iteratively improve the accuracy of the belief, by exchanging messages in the form of
extrinsic LLRs between VNs and CNs along the edges of the Tanner graph.

For an excellent and comprehensive description of belief propagation (BP) decoding,
we refer the reader to [59, Ch. 5.3]. Here, we will only briefly review the basic steps of
the decoding algorithm. We use the following convention. Messages arriving at VNs are
denoted by a, while messages emanating from VNs are denoted by b. For CNs, it is the
other way around, i.e., arriving messages are denoted by b, while emanating messages
by a. In an attempt to avoid cluttered notation, only one index is appended to a or b

in order to locally distinguish between messages along di�erent edges for the same node.
The corresponding picture we have in mind is illustrated in Fig. 3.6. By locally we mean
that, for example, the message b1 emanating from the magnified VN does not correspond
to the message b1 arriving at the magnified CN. (In fact, from the way the figure is
drawn, the message b1 arriving at the magnified CN would emanate from the fourth VN,
counting from the top.)

Consider now an arbitrary VN of degree dv, where the degree of a VN corresponds to
the number of CNs that are connected to it. There are dv + 1 messages arriving at this
VN, where a1, . . . , a

d

v

are messages from CNs and ach corresponds to a channel LLR.
The dv outgoing messages b1, . . . , b

d

v

are computed according to

b
i

=
ÿ

≥i

a
j

+ ach, (3.8)
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where the summation is over the index set j œ {1, . . . , dv} excluding the index i. Similarly,
if we consider an arbitrary CN of degree dc, there are dc messages b1, . . . , b

d

c

arriving
and the outgoing messages are computed according to

a
i

= 2 tanh≠1

A
Ÿ

≥i

tanh(b
j

/2)
B

, (3.9)

where the product is over the index set j œ {1, . . . , dc} excluding the index i. Since the
CN operation (3.9) is central in the analysis of LDPC codes under iterative decoding, it
is very common to rewrite it in terms of the binary boxplus operator defined as

b1 � b2 = 2 tanh≠1 (tanh(b1/2) tanh(b2/2)) , (3.10)

where the box-addition of an arbitrary number of terms is evaluated by recursively ap-
plying (3.10), e.g., b1 � b2 � b3 = (b1 � b2) � b3. With this convention, one can write the
CN operation more concisely as

a
i

=�
≥i

b
j

. (3.11)

The decoding process can now be described as follows. Initialize ach for all VNs to the
corresponding channel LLR, and set all other messages to 0. Then, repeat the following
two steps. First, compute outgoing messages for all VNs according to (3.8). After that,
compute the outgoing messages for all CNs according to (3.9). Stop if either a maximum
number of iterations has been reached, or the proper combination of the hard decisions
on the messages

d

vÿ

j=1
a

j

+ ach (3.12)

for all VNs forms a valid codeword.

3.3.3 Density Evolution
Density evolution (DE) is a powerful tool to analyze the iterative decoding behavior and
performance of LDPC codes [60]. DE mimics the decoding process under a cycle-free
graph assumption by tracking how the densities of the messages evolve with iterations.
DE is commonly used to find so-called decoding thresholds, which can be interpreted as
the capacity for LDPC codes under BP decoding. Similar to the channel capacity, the
threshold divides the channel quality parameter range (for example the parameter ‡2 of
a symmetric Gaussian LLR channel) into a region where reliable decoding is possible and
where it is not.

The main steps in the DE algorithm can be understood by considering the update equa-
tions for the VNs (3.8) and CNs (3.9). If we assume that the involved incoming messages
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are random variables, then they have a certain probability distribution or density (for
example, ach is distributed according to LLR channel). The main question is, how can
we obtain the densities of the outgoing messages? For the VN update, the answer turns
out to be a simple convolution. In particular, for two independent random variables A

and B with distributions f
A

(a) and f
B

(b), their sum C = A + B is distributed according
to f

C

(c) = f
A

(a) ⇣ f
B

(b). It is convenient to introduce the short notation a ⇣ b, where
a and b are placeholders for the densities of the random variables A and B [61]. With
this notation, the densities of the outgoing messages, given the densities of the incoming
messages, can be computed according to

b
i

= ⇣
≥i

a
j

⇣ ach. (3.13)

For the CN update, it is somewhat more challenging to obtain the densities of the out-
going messages. The most straightforward approach is by using Monte Carlo techniques
and histograms. Consider the case where two messages b1 and b2 with densities b1 and
b2 are processed according to the boxplus operation a = b1 � b2. In order to obtain
the density a, one can simply generate many independent realizations of the random
variables B1 and B2, perform the boxplus operation, and collect the resulting samples.
These samples can be seen as a particle representation of the density a. This method is
illustrated in Fig. 3.7, where it is shown how two consistent Gaussian densities “evolve”
under the boxplus operation. A density a is called a consistent Gaussian density4 with
parameter ‡2, if A ≥ N (‡2/2, ‡2). As a short notation, one may introduce the operator
a = b1 ⇠ b2, referred to as box-convolution [61]. In practice, the box-convolution of two
densities can be implemented by using a look-up table approach [62]. Similar to (3.14),
the densities of the outgoing CN messages can then be computed according to

a
i

= ⇠
≥i

b
j

. (3.14)

For protograph-based codes, DE can be used to analyze the iterative decoding behavior
by tracking one density for each edge in the protograph. This asserts that the messages
exchanged during the decoding process over edges belonging to the same edge-type (de-
fined by one protograph edge) have the same density. Assume that the transmission
takes place over a symmetric LLR channel with a fixed channel quality and we wish to
predict the iterative decoding behavior. Due to the channel symmetry, one may assume
the transmission of the all-zero codeword [59, p. 389]. Start by initializing ach for all
VNs in the protograph to f

L|B(l|0) and set all other densities to ”(l). Then, repeat the
following two steps. First, calculate the outgoing message densities for all VNs in the
protograph according to (3.13). After that, calculate the outgoing message densities for
all CNs in the protograph according to (3.14). Stop if the error probability associated

4Note that the conditional distribution f

L|B(l|0) of a symmetric Gaussian LLR channel corresponds to
a consistent Gaussian density.
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Figure 3.7: Illustration of the box-convolution of two consistent Gaussian densities. The green
dashed line corresponds to the consistent Gaussian approximation obtained via
EXIT functions.

with the density

d

v⇣
j=1

a
j

⇣ ach (3.15)

for each VN is below a certain target bit error probability (successful decoding), where
the error probability associated with a density a is given by

p
e

(a) =
⁄ 0

≠Œ
f

A

(a) da, (3.16)

or a maximum number of iterations is reached (decoding failure). In order to find the
decoding threshold, the above procedure is repeated many times for decreasing channel
quality until the decoding fails, starting from a channel quality where the decoding is
successful.

Approximate Density Evolution via EXIT Functions

Tracking the full densities (or quantized densities in practice) is computationally de-
manding and extrinsic information transfer (EXIT) functions are usually considered to
be a good compromise between computational e�ciency and accuracy [63]. Let us as-
sume that the density a fulfills the condition f

A

(a)ea = f
A

(≠a). Then, the density can
be associated with the MI measure

I(a) = 1 ≠
⁄ Œ

≠Œ
f

A

(a) log2(1 + e≠a) da. (3.17)
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Now, instead of tracking the evolution of densities, one may track the evolution of the MI
measure associated with the densities (which is just a scalar value for each density). Let
us assert that, under the VN operation, this measure evolves approximately according to

I(b
i

) ¥ J̃

A
ÿ

≥i

J̃≠1(I(a
j

)) + J̃≠1(I(ach))
B

, (3.18)

whereas, under the CN operation it evolves approximately according to

I(a
i

) ¥ 1 ≠ J̃

A
ÿ

≥i

J̃≠1(1 ≠ I(b
j

))
B

, (3.19)

where J̃(x) = J(
Ô

x). These two equations can be motivated as follows. Eq. (3.18) is ex-
act under the assumption that all incoming densities a1, . . . , a

d

v

, and ach are consistent
Gaussian densities. To see this, note that the convolution of two consistent Gaussian
densities with parameters ‡2

1 and ‡2
2 is another consistent Gaussian density with param-

eter (‡2
1 + ‡2

2)/2. Furthermore, if a is a consistent Gaussian density with parameter ‡2,
the operation J̃≠1(I(a)) simply returns ‡2. Without going into details, (3.19) can be
heuristically motivated by a duality property that holds for the binary erasure channel
(BEC) [59, p. 415]. It is important to point out that (3.19) it is not exact, even if all
incoming densities are consistent Gaussians, but it turns out to be surprisingly accurate
nonetheless. For example, the green dashed lines in Fig. 3.7 have been obtained using
(3.19), where the resulting MI measure is plotted in the form of the associated consistent
Gaussian density.

3.3.4 Spatially Coupled LDPC Codes
Spatial coupling of regular5 LDPC codes has emerged as a powerful technique to construct
capacity-achieving codes for a large class of channels using iterative BP decoding [13,64].
The main idea is to make several copies of the Tanner graph that defines the regular base
code, arrange the copies next to each other, and then interconnect neighboring graphs in
a particular way. The key to the outstanding performance of codes constructed in such
a way is a boundary e�ect due to slight irregularities at the two ends of the resulting
Tanner graph.

In general, SC-LDPC codes have parity-check matrices with a band-diagonal structure,
see, e.g., [64] for a formal definition. Here, we briefly introduce their construction via pro-
tographs [65], [66, Sec. II-B]. The base matrix P[T ] of a (J, K) regular, protograph-based
SC-LDPC code with termination length T can be constructed by specifying matrices
P

i

, 0 Æ i Æ ms + 1 of dimension J Õ by K Õ, where ms is referred to as the memory.
The matrices are such that P =

q
i

P
i

has column weight J and row weight K for all
columns and rows, respectively. Given T and the matrices P

i

, the base matrix P[T ]

5An LDPC codes is called regular if all VNs have degree d

v

and all CNs have degree d

c

.
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Figure 3.8: Illustration of the base matrix P
[T ]

of a (J, K) regular, protograph-based SC-LDPC
code.

is constructed as shown in Fig. 3.8. From the dimensions of P[T ] one can infer a de-
sign rate of R(T ) = 1 ≠ (T + ms)J Õ/(TK Õ). As T grows large, the rate approaches
R(Œ) = 1 ≠ J Õ/K Õ.

Before continuing, it is insightful to recall the following statement from [67], where the
design of irregular LDPC codes is studied. (VNs are referred to as message nodes.)

“[. . . ] we o�er some intuition as to why irregular graphs prove useful. [. . . ]
Message nodes with high degree tend to their correct value quickly. These
nodes then provide good information to the check nodes, which subsequently
provide better information to lower degree message nodes. Irregular graph
constructions thus lead to a wave e�ect, where high degree message nodes tend
to get corrected first, and then message nodes with slightly smaller degree,
and so on down the line.” [emphasis added]

For SC-LDPC codes, one can give a similar heuristic explanation for their outstanding
performance as follows (see [64] for a detailed explanation). By inspecting the structure
of the base matrix in Fig. 3.8, one may verify that the CN degrees corresponding to
the first and last couple of rows is lower than the CN degrees corresponding to the
rows in between. The lower degree CNs lead to a locally better decoding capability
which helps decoding neighboring VNs. This local boundary e�ect turns out to initiate
a wave-like behavior and can have a global e�ect on the decoding capability of the
entire code with increasing number of decoding iterations. To illustrate this behavior,
in Fig. 3.9, we show the predicted bit error rates p

e

via (approximate) DE for the coded
bits corresponding to the jth column of the SC-LDPC protograph P[T ] with component
matrices P1 = P2 = P3 = (1, 1) and T = 100. We assume transmission over a symmetric
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Figure 3.9: Illustration of the wave-like decoding behavior of SC-LDPC codes.

Gaussian LLR channel with parameter ‡2 = 4. In the figure, l denotes the iteration
number. It can be observed that the error probability of the VNs at the two ends of the
graph converges to zero after 15 iterations. Due to the spatial coupling, this boundary
e�ect propagates inwards all the way to the center of the protograph in a wave-like
fashion.

An important reason for the tremendous interest in spatially coupled codes is their
universality. While irregular LDPC codes have been optimized for various communication
channels, the degree distribution pairs that achieve the best performance usually vary
from channel to channel [68]. In contrast, SC-LDPC codes derived from simple regular
codes have been shown to universally achieve capacity for a variety of channels. However,
there are also many open research problems concerning the practical implementation of
SC-LDPC, see [69] for a recent overview. For example, the price to pay for the wave-like
decoding behavior is a rate loss with respect to regular, uncoupled codes that are defined
by the protograph B =

q
i

B

i

.
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CHAPTER 4

Conclusions and Future Work

In this chapter, we summarize the main conclusions from the appended papers and outline
some potentially interesting ideas for future work.

Paper A

In Paper A, we study the design of APSK signal constellations under the assumption of
a memoryless fiber-optical channel model with NLPN as the main system impairment.
Optimized APSK constellations can o�er significant performance advantages over con-
ventional QAM constellations for the assumed channel model and detection scheme. It
is also shown that the optimization of the signal constellation in the presence of severe
nonlinear distortions can lead to somewhat counterintuitive results in the form of sac-
rificial points or sacrificial rings. As outlined in [70], these e�ects become particularly
important when studying the channel capacity for such channels. Furthermore, when
the bit error probability (BEP) is taken as a performance measure, it is important to
consider the joint design of both the constellation and the labeling. In particular, an
optimized constellation for symbol error probability (SEP) with an optimal labeling does
not necessarily provide the best BEP. In fact, more structured constellations such as
the considered rectangular APSK constellations may give better performance due to the
possibility of Gray-like labeling methods.

An interesting direction for future work would be to replace the relevant measures for
uncoded transmission (SEP and BEP) with the relevant measures for coded transmission
(MI and generalized mutual information (GMI)). It may also be rewarding to find an
accurate approximate characterizations of the channel PDF for the considered channel
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model which may simplify the optimization procedure in this case.

Paper B

In Paper B, we study the design of a low-complexity detector for a memoryless fiber-
optical channel assuming PM transmission. The detector uses a phase compensation
scheme based on the received signal amplitudes in both polarizations, followed by a
subsequent threshold detection. The complexity can be significantly reduced compared
to a four-dimensional ML detector, albeit at some performance loss.

An important conclusion for the corresponding detector for SP transmission is that a
nonlinear phase compensation scheme and subsequent threshold detection is equivalent
to the ML detector. Unfortunately, a similar conclusion does not hold for the proposed
detector for PM signals and it would be interesting to study the design of an improved
detector that has this property (or show that this is fundamentally not possible). Fur-
thermore, the detector in Paper B is limited to PM-M -PSK constellations and similar
detection schemes for constellations with multiple amplitude levels could be investigated.

Paper C

In Paper C, we study a coded transmission system that operates over a fiber-optical link
without inline dispersion compensation. Assuming a linear coherent receiver, the classical
AWGN channel with a modified SNR expression is used as a design channel. We propose
a method to optimize the bit mapper that determines the allocation of the coded bits
from the FEC encoder to the labeling bits of the signal constellation that is applicable to
any protograph-based LDPC code. Protograph-based codes are particularly interesting
for fiber-optical systems because they allow for an e�cient hardware implementation.
We also extend the technique to SC-LDPC codes using a windowed decoder. The results
show that by using an optimized bit mapper, the transmission reach can be extended by
up to 8%, with almost no added system complexity.

An interesting direction for future work could be to study the bit mapper optimization
assuming hard-decision decoding. For example, Smith and Kschischang have proposed
such a setup in [49] using staircase codes for BICM with an additional shaping unit. An
appropriate model in this case would be to study parallel binary symmetric channels with
di�erent crossover probabilities. To the best of our knowledge, bit mapper optimization
for such a scenario has not yet been considered in the literature.
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1 Introduction

Abstract

We study the design of amplitude phase-shift keying (APSK) constel-
lations for a coherent fiber-optical communication system where non-
linear phase noise (NLPN) is the main system impairment. APSK
constellations can be regarded as a union of phase-shift keying (PSK)
signal sets with di�erent amplitude levels. A practical two-stage (TS)
detection scheme is analyzed, which performs close to optimal detection
for high enough input power. We optimize APSK constellations with
4, 8, and 16 points in terms of symbol error probability (SEP) under
TS detection for several combinations of input power and fiber length.
For 16 points, performance gains of 3.2 dB can be achieved at a SEP of
10≠2 compared to 16-QAM by choosing an optimized APSK constel-
lation. We also demonstrate that in the presence of severe nonlinear
distortions, it may become beneficial to sacrifice a constellation point
or an entire constellation ring to reduce the average SEP. Finally, we
discuss the problem of selecting a good binary labeling for the found
constellations.

1 Introduction
Fiber nonlinearities are considered to be one of the limiting factors for achieving high
data rates in coherent long-haul optical transmission systems [1–3]. Therefore, a good
understanding of the influence of nonlinearities on the system behavior is necessary in
order to increase data rates of future optical transmission systems.

The optimal design of a signal constellation, i.e., placing M points in the complex
plane such that the symbol error probability (SEP) is minimized under an average or
peak power constraint, can be considered a classical problem in communication the-
ory [4, Ch. 1]. The problem was addressed for example by Foschini et al. in the early
70s for the additive white Gaussian noise (AWGN) channel with [5] and without [6] con-
sidering a random phase jitter. However, only little is known about the influence of fiber
nonlinearities on the optimal signal set. In this paper, we consider signal constellation
design for a nonlinear fiber-optical channel model assuming single-channel transmission,
hence neglecting interchannel impairments. We focus on a specific class of constellations
called amplitude phase-shift keying (APSK), which can be defined as the union of phase-
shift keying (PSK) signal sets with di�erent amplitude levels. This choice is motivated
by the fact that these constellations have long been recognized to be robust formats to
cope with nonlinear amplifier distortions prevalent in satellite communication systems,
see, e.g., [7–10], [11, pp. 27–28] and references therein.

The input–output relationship of the fiber-optical baseband channel is described im-
plicitly by the stochastic nonlinear Schrödinger equation (sNLSE) [12, Ch. 2]. It is well
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recognized that this type of channel model does not lend itself to an easy solution for
various communication theoretic problems [13, 14]. We therefore consider a simplified,
dispersionless channel model which follows from the sNLSE by neglecting the dispersive
term and captures the interaction of Kerr-nonlinearities with the signal itself and the
inline amplified spontaneous emission (ASE) noise, giving rise to nonlinear phase noise
(NLPN) [15, 16]. A discrete channel is obtained from the waveform channel on a per-
sample basis (assuming ideal carrier and timing recovery) [17, Sec. III]. This model has
been previously considered by several authors in the literature and di�erent methods
have been applied to derive the joint probability density function (PDF) of the received
amplitude and phase [3,16–18]. Since all these derivations neglect dispersion, the result-
ing PDF should serve as a useful approximation for dispersion-managed (DM) optical
links, provided that the local accumulated dispersion is su�ciently low [3, p. 160], [19].
However, if the interaction between dispersion and nonlinearities becomes too strong,
the channel model is likely to diverge from the one assumed here.1 We point out that
several studies have addressed the influence of dispersion on the variance of NLPN in the
context of DM links using linearization techniques [22–26]. In [27] a comprehensive study
on quantifying the parameter space where nonlinear signal-noise interactions including
NLPN are dominant impairments for di�erent modulation formats was presented. A
brief discussion on the applicability of the assumed channel model in the context of DM
links is also provided in [27]. An extensive literature review on the topic of NLPN is
included in [25].

Signal constellation design and detection assuming the same channel as here has been
studied previously in [28–30]. In [28], the authors applied several predistortion and post-
compensation techniques in combination with minimum-distance detection for quadra-
ture amplitude modulation (QAM) to mitigate the e�ect of NLPN. They also proposed
a two-stage (TS) detector consisting of a radius detector, an amplitude-dependent phase
rotation, and a phase detector. Moreover, parameter optimization was performed with
respect to four 4-point, custom constellations under maximum likelihood (ML) detection.
In [29], the TS detector was used to optimize the radii of four 16-point constellations for
two power regimes. It was shown that the optimal radii highly depend on the transmit
power. In [30], the SEP of M -PSK was studied assuming a minimum-distance detec-
tor. In [14], a capacity analysis is presented for fiber-optical channels. The authors use
bivariate Gaussian PDFs to represent the discrete-time channel where the covariance
matrices are obtained through extensive numerical simulation. Continuous-input ring
constellations are used to exploit the assumed rotational invariance of the channel and
subsequently find lower bounds on the maximum achievable information rates. For the
same channel model, in [31] the occupancy frequency and spacing of the ring constel-
lation were optimized. Related work was presented in [32], where the channel output
PDF is approximated through numerically obtained histograms and optimized ring con-

1As an extreme case, for dispersion-uncompensated links, it was found that the channel is well-modeled
by a Gaussian PDF [20,21].
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stellations are found. Discrete constellations are then obtained through quantization. A
similar quantization technique was applied in [33].

In this paper, we first analyze the (suboptimal) TS detector developed in [28]. We
regard radius detection and phase rotation as a separate processing block that yields a
postcompensated observation and we explain how to derive the corresponding PDF for
constellations with multiple amplitude levels. To the best of our knowledge, this PDF has
not been previously derived, possibly due to the fact that the SEP under TS detection
can be calculated with a simplified PDF [34]. The new PDF is used to gain insights into
the performance behavior of the TS detector compared to optimal detection. We also
show that this PDF is necessary to accurately calculate the average bit error probability
(BEP) of the constellation.

We then find optimal APSK constellations in terms of SEP under TS detection for a
given input power and fiber length. In contrast to [29], we optimize the number of rings,
the number of points per ring, as well as the radii. For the case M = 4, we choose identical
system parameters as in [28] and a comparison reveals that our approach results in
similar, sometimes better, constellations, with the advantage of much less computational
design complexity. This allows us to extend the optimization to M = 8 and M = 16.
For the latter case, our results show that the widely employed 16-QAM constellation
has poor performance compared to the best found constellations over a wide range of
input powers for this channel model and detector. We also provide numerical support
for the phenomenon of sacrificial points or satellite constellations, which arise in the
context of constellation optimization in the presence of very strong nonlinearities [35,36].
Our findings show, somewhat counterintuitively, that it is sometimes optimal to place a
constellations point (or even an entire constellation ring) far away from all other points
in order to improve the average performance of the constellation.

Due to the separation of a hard-decision symbol detector and subsequent error cor-
rection in state-of-the-art fiber-optical communication systems, the uncoded BEP is an
important figure of merit. Therefore, we also address the problem of choosing a good
binary labeling for APSK constellations in the presence of NLPN. We pay special atten-
tion to a class of APSK constellation which allows the use of a Gray labeling, which we
call rectangular APSK. For this class, we propose a method to choose the phase o�sets
of the constellation rings resulting in near-optimal performance. The proposed method
might also be useful when soft information is passed to a decoder in the form of bit-wise
log-likelihood ratios in a bit-interleaved coded modulation (BICM) scheme. For BICM,
it is known that the labeling can have a significant impact on the achievable information
rate and the system performance [37].

The remainder of the paper is organized as follows. In Sec. 2, we present the channel
model and define the generic APSK signal set. In Sec. 3, we briefly review ML detection
and then describe and analyze the suboptimal TS detector together with the correspond-
ing PDF. The results of the constellation optimization with respect to SEP are presented
and discussed in Sec. 4. Binary labelings are discussed in Sec. 5. Concluding remarks

A5



Paper A

Table 1: Constants and Parameters taken from [28]
symbol value meaning

“ 1.2 W≠1km≠1 nonlinearity parameter
n

sp

1.41 spontaneous emission factor
h 6.626 · 10≠34 J s Planck’s constant
‹ 1.936 · 1014 Hz optical carrier frequency
– 0.0578 km≠1 fiber loss (0.25 dB/km)

�‹ 42.7 GHz optical bandwidth

can be found in Sec. 6.

2 System Model
2.1 Channel
We consider the discrete memoryless channel [3, Ch. 5]

Y = (X + Z)e≠ä�
NL , (A.1)

where ä ,
Ô

≠1 denotes the imaginary unit, X œ X the complex channel input, X the
signal constellation, Z the total additive noise, Y the channel observation, and �NL the
NLPN, which is given by [3, Ch. 5]

�NL = “L

K

Kÿ

i=1
|X + Z

i

|2. (A.2)

In (A.2), “ is the nonlinear Kerr-parameter, L is the total length of the fiber, K denotes
the number of fiber segments, and Z

i

is the noise contribution of all fiber segments up to
segment i. More precisely, Z

i

, N1 + . . . + N
i

is defined as the sum of i independent and
identically distributed complex Gaussian random variables with zero mean and variance
‡2

0 per dimension (real and imaginary parts). The total additive noise of all K fiber
segments is denoted by Z , Z

K

, which has variance ‡2 , E
#
|Z|2

$
= 2K‡2

0 , where E [ · ]
is the expected value. For ideal distributed amplification, we consider the case K æ Œ.
The total noise variance can be calculated as ‡2 = 2n

sp

h‹–�‹L [14, Sec. IX-B], where all
parameters are taken from [28] and are summarized in Table 1. The additive noise power
spectral density as defined in [14] is then given by N0 , n

sp

h‹– = 1.04 · 10≠20 W/km/Hz.
Note that the total additive noise variance scales linearly with the fiber length.

An important aspect of this channel model is the fact that the variance of the phase
noise is dependent on the channel input (cf. (A.2)), or equivalently on the average trans-
mit power P , defined as P , E

#
|X|2

$
. In Fig. 1 we show received scatter plots for Y (cf.

(A.1)) assuming X œ X16-QAM, where X16-QAM , {


P/10(a + äb) : a, b œ {±1, ±3}} is
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Figure 1: Scatter plots of Y assuming X œ X
16-QAM

for several combinations of transmit power
P and fiber length L.

the 16-QAM constellation, and K = 100 for several combinations of P and L. The pur-
pose of Fig. 1 is to gain insight into the qualitative behavior of the channel. It can be
observed that for very low input power and fiber length, nonlinearities are negligible and
the channel behaves as a standard AWGN channel. The scatter plots along a diagonal
in Fig. 1 correspond to a constant signal-to-noise ratio (SNR), defined as SNR , P/‡2.
In contrast to an AWGN channel for which the scatter plots along any diagonal would
look similar, the received constellation points in Fig. 1 start to rotate in a deterministic
fashion and the e�ect of the NLPN becomes pronounced for large L and P . Therefore,
in order to specify the operating point of the channel, the SNR alone is not su�cient,
because the parameter space of the channel is two-dimensional, cf. [17, Sec. VII]. In
this paper, we present performance results assuming a fixed fiber length and variable
transmit power.

2.2 Amplitude-Phase Shift Keying
We use the term APSK for the discrete-input constellations considered in this paper and
focus on constellations with M = 4, 8, and 16 points. The APSK signal set is defined
as [9]

X ,
;

r
k

e
ä

!
2fij

l

k

+Ï

k

"
: 1 Æ k Æ N, 0 Æ j Æ l

k

≠ 1
<

, (A.3)
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where N denotes the number of amplitude levels or rings, r
k

the radius of the kth ring,
l
k

Ø 1 the number of points in the kth ring, where
q

N

k=1 l
k

= M , and Ï
k

the phase o�set
in the kth ring. Throughout the paper, we assume a uniform distribution on the channel
input X over all symbols, and thus P = (1/M)

q
N

k=1 l
k

r2
k

. The radii are assumed to be
ordered such that r1 < . . . < r

N

and we use r , (r1, . . . , r
N

) to denote the radius vector.
In this paper, for l1 = 1, the point in the first ring is always placed at the origin, implying
r1 = 0. The radius vector is said to be uniform if r

k+1 ≠ r
k

= � for 1 Æ k Æ N ≠ 1,
where � = r2 if l1 = 1 and � = r1 if l1 Ø 2. The symbols are assumed to be indexed,
i.e., x

i

œ X , i = 1, . . . , M . The indexing is done starting in the innermost ring (k = 1)
by increasing j from 0 to l1 ≠ 1 and then moving to the next ring increasing j from 0 to
l2 ≠ 1 and so on. Thus, finally we have x1 = r1eäÏ

1 , . . . , x
M

= r
N

eä2fi(l

N≠1

)/l

N

+Ï

N .
We also define the vectors l , (l1, . . . , l

N

) and Ï , (Ï1, . . . , Ï
N

), and use the no-
tation l-APSK for an APSK constellation with N rings and l

k

points in the kth ring,
e.g., (4,4,4,4)-APSK. Note that this notation does not specify a particular constellation
without ambiguity, due to the missing information about the radii and phase o�sets.

3 Detection Methods
3.1 Symbol Error Probability
Let R

i

, 1 Æ i Æ M , be the decision region implemented by a detector for the symbol x
i

,
i.e., X̂ = x

i

if Y œ R
i

, where X̂ denotes the detected symbol. The average SEP is then

SEP = 1 ≠ 1
M

Mÿ

i=1
P

iæi

, (A.4)

where P
iæj

, Pr[X̂ = x
j

|X = x
i

], 1 Æ i, j Æ M , are the symbol transition probabilities2

calculated as
P

iæj

=
⁄

R
j

f
Y |X=x

i

(y) dy. (A.5)

That is, P
iæj

is obtained through integration of the conditional PDF of the observation
given the channel input X = x

i

over the detector region for x
j

.

3.2 Maximum Likelihood Detection
Let the polar representation of the channel input and the observation be given by X =
R0ej�

0 and Y = Rej�, respectively. The PDF of Y can be written in the form [17, Sec.
III], [3, p. 225], [28]

f
Y |X=x

(y) =
f

R|R
0

=r

0

(r)
2fir

+ 1
fir

Œÿ

m=1
Ÿ

Ó
C

m

(r, r0)eäm(◊≠◊

0

)
Ô

, (A.6)

2For the SEP, only the cases j = i, 1 Æ i Æ M , need to be considered. In Sec. 5, all transition
probabilities are used.
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R

first detection stage phase rotation

postcompensation sec. detection stage

Figure 2: Block diagram of the TS detector. Note that the depicted postcompensation of Y

to Ỹ is reversible.

where x = r0eä◊

0 , y = reä◊, Ÿ{z} is the real part of z œ C, and the PDF of the received
amplitude R given the transmitted amplitude R0 = r0 is

f
R|R

0

=r

0

(r) = 2r

‡2 exp
3

≠r2 + r2
0

‡2

4
I0

3
2rr0
‡2

4
, (A.7)

where I0 ( · ) is the modified Bessel function of the first kind. Analytical expressions for
the coe�cients C

m

(r, r0) can be found in [17, Sec. III]. The ML detector can now be
described in the form of decision regions RML

i

µ C for each symbol x
i

œ X :

RML
i

,
M‹

j=1
j ”=i

{y œ C : f
Y |X=x

i

(y) Ø f
Y |X=x

j

(y)}. (A.8)

If we take the ML decision regions defined in (A.8), then (A.4) becomes a lower bound
on the achievable SEP with suboptimal detectors.

Evaluating the SEP by numerically integrating over the PDF (A.6) is computationally
expensive. Moreover, unlike for an AWGN channel, where the ML regions simply scale
proportionally to

Ô
P , the ML decision regions defined in (A.8) change their shape based

on the transmit power P [28]. This renders ML detection rather impractical for the
purpose of constellation optimization.

3.3 Two-Stage Detection
In this paper, we study a slightly modified version of the suboptimal TS detector proposed
in [28]. This detector is a practical alternative to the ML detector because it has much
lower complexity. In particular, the TS detector employs one-dimensional decisions: First
in the amplitude direction (first detection stage), followed by a phase rotation, and then
in the phase direction (second detection stage).

In Fig. 2, we show a block diagram of the TS detector. We refer to the first detection
stage together with the phase rotation as postcompensation. Based on the absolute value
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of the observation R, radius detection is performed. In contrast to [28] and [29], we
use maximum a posteriori (MAP) instead of ML radius detection and make use of the
a priori probability for selecting a certain ring at the transmitter, thereby achieving a
small performance advantage. The radius detector implements the rule: Choose R̂0 = r

k

,
when µ

k≠1 Æ R < µ
k

, where µ
k

, 0 Æ k Æ N , denote the decision radii or thresholds. The
MAP decision threshold µ

k

, 1 Æ k Æ N ≠ 1, between r
k

and r
k+1 is obtained by solving

Pr [R0 = r
k

] f
R|R

0

=r

k

(µ
k

) = Pr [R0 = r
k+1] f

R|R
0

=r

k+1

(µ
k

), (A.9)

where the a priori probabilities are given by Pr [R0 = r
k

] = l
k

/M .3 We always define
µ0 , 0 and µ

N

, Œ. Based on the radius R̂0 of the detected ring and the received
amplitude R, a correction angle ◊

c

is calculated, by which the observation Y is rotated
to obtain the postcompensated observation Ỹ as shown in Fig. 2. The correction angle
is given by

◊
c

(R, R̂0) = ≠\C1(R, R̂0), (A.10)

which is approximately a quadratic function in R [28].
The second detection stage is then performed with respect to Ỹ : A phase detector

chooses the constellation point with radius R̂0 that is closest to Ỹ . Graphically, the TS
detector employs so called annular sector regions (or annular wedges) as decision regions
for Ỹ .

3.4 PDF of the Postcompensated Observation
It is shown in [28] that for PSK signal sets (which, in this paper, are denoted by (M)-
APSK) where R̂0 =

Ô
P = const., a minimum-distance detector for Ỹ is equivalent to

ML detection. In contrast, for constellations with multiple amplitude levels, the receiver
structure in Fig. 2 does not perform ML detection. However, in principle, optimal detec-
tion of X is still possible based on Ỹ due to the fact that the postcompensation in Fig. 2
is invertible and every invertible function forms a su�cient statistic for detecting X based
on Y [38, p. 443]. Thus, the performance loss associated with the TS detection scheme
originates solely from suboptimal detection regions, not from the postcompensation itself,
which is a lossless operation.4

In the following, we show how the PDF of the postcompensated observation Ỹ can be
computed. This PDF can then be used to find optimal detection regions for Ỹ . It is
clear from the block diagram of Fig. 2 that the PDF can be written as

f
Ỹ |X=x

(ỹ) = f
Y |X=x

1
ỹ · e≠ä◊

c

(R,R̂

0

)
2

. (A.11)

3Solving (A.9) for µ

k

can be done numerically and for an approximate analytical solution assuming
that r

k

”= 0, one may apply the high-SNR approximation I
0

(x) ¥ e

x

Ô
2fix

as was done in [29] for the
ML radius detector.

4An important question that we do not address is whether the phase rotation (A.10) is still the best
choice for multilevel constellations, assuming that one is constrained to straight-line phase decision
boundaries for Ỹ .
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decision radii

µ1

µ2

µ3

Figure 3: PDF of Ỹ for P = ≠5 dBm and L = 5500 km conditioned on one particular point in
each ring of the uniform (4,4,4,4)-APSK constellation. Color is helpful.

Most importantly, the correction angle ◊
c

is a discontinuous function of the amplitude
R because it depends on the detected ring R̂0. In general, the correction angle can be
written as

◊
c

(R, R̂0) =

Y
__]

__[

◊
c

(R, r1) if µ0 Æ R < µ1
...

...
◊

c

(R, r
N

) if µ
N≠1 Æ R < µ

N

. (A.12)

For illustration purposes, we plot in Fig. 3 the PDF resulting from (A.11) and (A.12)
conditioned on one particular point in each ring of the uniform (4, 4, 4, 4)-APSK constel-
lation5. If we consider the PDF conditioned on X = r2, i.e., R0 = r2 and �0 = 0 (shown
in red), it can be observed that the contour lines look as though they have been sliced
up along the decision radii of the radius detector. For R < µ1, the correction angle is
calculated with respect to r1, and thus, the phase is undercompensated. On the other
hand, for R Ø µ2, the wrongly detected radius results in an overcompensation.

3.5 Performance Comparison
For a qualitative performance comparison between the di�erent detectors, in Fig. 4(a),
the PDF in (A.6) is plotted for the uniform (4, 4, 4, 4)-APSK constellation together with
the ML decision regions. In Fig. 4(b), the PDF in (A.11) is used instead. Finally, Fig.
4(c) shows the same PDF as Fig. 4(b) together with the suboptimal decision regions

5The PDFs of the points which are not shown look identical to the PDF of the corresponding point in
the same ring up to a phase rotation.
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(a) ML decision regions w.r.t. Y (b) ML decision regions w.r.t. Ỹ

(c) TS decision regions

Figure 4: Decision regions for the uniform (4, 4, 4, 4)-APSK constellation at P = ≠4 dBm.
Shaded regions correspond to the point X = r

3

e

äfi/2.

implemented by the TS detector. As an example, the decision regions corresponding to
the point X = r3eäfi/2 are shaded in Fig. 4.

Comparing the optimal decision regions in Fig. 4(b) with the decision regions in Fig.
4(c), it can be seen that TS detection is clearly suboptimal for this constellation and
input power. However, one would expect the two small shaded regions in Fig. 4(b) to
become smaller for higher power. Intuitively, this is explained by the increasing accuracy
of the radius detector for increasing transmit power, due to the Rice distribution (A.7)
of the amplitude. More precisely, let P

(e)
k

, Pr[R̂0 ”= R0|R0 = r
k

] be the probability of
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an error in the first detection stage, given that a symbol in the kth ring is transmitted.
Then

P
(e)
k

= 1 ≠ (Q1 (r̃
k

, µ̃
k≠1) ≠ Q1 (r̃

k

, µ̃
k

)) , (A.13)
where Q1 ( · , · ) is the Marcum Q-function, r̃

k

,
Ô

2r
k

/‡, and µ̃
k

,
Ô

2µ
k

/‡. It follows
that the SEP under TS detection converges to the SEP under ML detection for increasing
input power and any APSK constellation with uniform radius vector, since then P

(e)
k

,
1 Æ k Æ N , tends to zero as P increases.

4 Constellation Optimization
4.1 Problem Statement
In this section, we optimize the parameters of APSK constellations by minimizing the
SEP under TS detection. Formally, the optimization problem can be stated as: Given
M , P , and L,

minimize
l,r

SEP under TS detection (A.14)

subject to 1 Æ N Æ M (A.15)
l1 + . . . + l

N

= M (A.16)
l1r2

1 + . . . + l
N

r2
N

= PM (A.17)
l
k

Ø 1, for 1 Æ k Æ N. (A.18)

The objective function can be computed analytically using (A.4) with the PDF (A.11)
integrated over the TS detector regions [34, Eq. (4)]. Note that the phase o�set vector
Ï does not appear in the minimization problem. This is due to the fact that the SEP
under TS detection does not change assuming a phase o�set in any of the constellation
rings: The PDF of Ỹ is simply rotated by the phase o�set, but so is the detector region
itself, and hence the integrals in (A.5) are not a�ected.

It is instructive to begin by discussing two special cases of the general optimization
problem above. The first case is obtained when r is assumed to be uniform and an opti-
mization is performed only over the number of points in each ring l, cf. (A.14)≠(A.18).
The optimization problem then becomes an integer program which can be solved in an
exhaustive fashion for the constellation sizes considered in this paper. The number of
ways to distribute M constellation points to i rings is given by

!
M≠1
i≠1

"
. At most, there

are M rings, which gives a total of
q

M

i=1
!

M≠1
i≠1

"
= 2M≠1 possibilities to choose l. There

are 8, 128, and 32768 possibilities for 4, 8, and 16 points, respectively. It is clear that
such a brute-force approach becomes unfeasible for larger constellations. However, based
on the obtained results, it might be possible to devise more sophisticated search methods
for M > 16, e.g., by neglecting unrealistic combinations a priori.

The second special case is given by the optimization of the radius vector r for a certain
constellation with fixed parameter l. For this case, the optimization problem becomes a
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nonlinear program. Due to the power constraint, the dimensionality of the search space
is N ≠1 if l1 > 1 and N ≠2 if l1 = 1, respectively. By inspecting the target function, one
can verify that this problem is nonconvex, i.e., a local optimum does not necessarily imply
a global solution. We tested di�erent nonlinear solvers and obtained very good solutions
with the Nelder–Mead simplex method [39]. Even though the solution is not guaranteed
to be the globally optimal, we verified the global optimality for several constellations and
several combinations of input power and fiber length with a brute-force grid search.

By combining the solutions to the two special cases above, a solution to the general
optimization problem can then be found as follows: For each APSK constellation with
a certain fixed parameter l one determines the optimal radius vector via the simplex
method for a given input power and fiber length, and then optimizes over all possible l.
We call this approach joint optimization.

4.2 Results and Discussion
4 Points

We start by finding optimal APSK constellations with M = 4 points. The fiber length
is fixed at L = 7000 km and the input power P is varied from ≠15 dBm to 5 dBm in
steps of 0.5 dBm. In Fig. 5 we plot the performance of all possible eight 4-point APSK
constellations with optimal radius vector (dashed lines) and the curves are labeled with
the corresponding l. (For (4)-APSK and (1, 3)-APSK the radius vector is fixed, i.e.,
no optimization is performed.) The results of the joint optimization are shown with
markers. We also show the SEP of (4)-APSK (or 4-QAM) in an AWGN channel under
ML detection as a well-known reference curve (dash-dotted line). Note that for each P

the SEP is minimized by a constellation with certain parameters l and r. For example, it
can be seen that for an input power range between ≠15 dBm and ≠7.5 dBm, (4)-APSK
is optimal.

Based on the behavior of the SEP for the individual APSK constellations with opti-
mized radius vector (dashed lines in Fig. 5), it is possible to classify the constellations
into three classes. The first class exhibits a well known performance minimum, i.e., an
optimal operating power. The second class does not exhibit a minimum, but eventu-
ally flattens for very high input power (see, e.g., the performance of (3, 1)-APSK). The
third class exhibits a performance behavior which is strictly and steadily decreasing with
increasing input power.

The flattening of the SEP for the second class is explained by the availability of a
sacrificial point in the outer constellation ring. The meaning of the term sacrifical is
best explained with the help of an example. In Fig. 6 we show the results of the radius
optimization for (3, 1)-APSK (top), together with the optimal values of the parameter r

(bottom). It can be observed that, for P > ≠3 dBm, the optimal ring spacing shows a
very peculiar behavior. For this power regime, r1 appears to be fixed and any increase in
average power is absorbed by putting the outermost point further away from the inner
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Figure 5: Results for the constellation optimization with M = 4. The fiber length is L =
7000 km. The dash-dotted line is a reference curve, showing the SEP of 4-QAM in
an AWGN channel under ML detection.

ring. In some sense, the outer point (experiencing very high NLPN) is sacrificed with
the result of saving the average SEP of the constellation. Observe that (1, 1, 1, 1)-APSK
is the only APSK constellation with 4 points that belongs to the third class6 and it was
already argued in [28], that this constellation is optimal for very high input power.7

The system parameters are chosen in such a way that the obtained results are directly
comparable to the performance of the optimized constellations presented in [28, Sec. IV].
To facilitate a comparison, in Fig. 7 we provide a digitalized version of [28, Fig. 15] and
plot the outcome of the joint optimization in the same figure. All four constellations used
in [28] can be seen as APSK constellations and they are depicted in Fig. 7 for convenience.
With the notation introduced in this paper, the constellations are (4)-APSK, (1, 3)-
APSK, (2, 2)-APSK with Ï = (0, Ï2), and (1, 2, 1)-APSK with Ï = (0, 0, Ï3). The
parameters Ï2 and Ï3 are determined by a precompensation technique developed in [28],
while the radius vector of the two latter constellations was optimized. It is important
to point out that the optimization in [28] was performed with respect to ML detection,
while for the joint optimization in this paper the suboptimal TS detector is assumed.

6The SEP for (2, 1, 1)-APSK in Fig. 5 flattens for very high input power.
7For APSK constellations with only one point in each ring the SEP under TS detection can be calculated

using (A.13) as SEP = 1

M

q
M

k=1

P

(e)

k

.
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Figure 6: Performance of the (3, 1)-APSK constellation with a uniform and optimized radius
vector (top) and the corresponding radius vector (bottom).

Notice that, for (4)-APSK these two detection schemes are equivalent and hence, the
performance results taken from [28] for (4)-APSK (constellation (a)) in Fig. 7 overlap
with the results of the joint optimization for an input power up to ≠7.5 dBm. Comparing
the results in Fig. 7, it can be seen that the jointly optimized APSK constellations
perform very close to the optimized constellations in [28]. For certain input powers, e.g.,
≠7 dBm or ≠5 dBm, a performance loss is visible, which is explained by the weaker
detection technique. On the other hand, for some power regimes, e.g., ≠3.5 dBm or
≠2 dBm, the jointly optimized constellations perform as well as, or even outperform, the
best constellations presented in [28]. We attribute this performance gain to the more
systematic search which is o�ered by the APSK framework. Also note that there is no
need to find phase precompensation angles as was done in [28], because those are relevant
only for ML detection, but irrelevant for the performance under TS detection. This
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Figure 7: Comparison between the joint optimization of the 4-point APSK constellation and
the results for optimized constellations (a)–(d) in [28] under ML detection. The
legend shows the constellation names originally used in [28].

removes one degree of freedom from choosing a constellation and makes the optimization
simpler. As a last point, it is unclear why constellation (d) in [28] does not exhibit a
flattening SEP for very high input power, even though the radius vector was optimized
and a sacrificial point is available. We conjecture that the SEP results for constellation
(d) for 3 dBm and 5 dBm are only locally optimal.

8 Points

For M = 8 points, we present optimization results for the same system parameters as
before. The results for the joint optimization are shown in Fig. 8 with markers. Since it
is not very instructive to show the performance of all 8-point APSK constellations in the
same figure, we only plot the SEP of those constellations that are optimal somewhere
in the considered power range (dashed lines). Thus, the parameter l is indicated by the
labeling of the corresponding dashed line. To avoid cumbersome notation, we also define
1

N

, 1, . . . , 1 (N times). To get a more intuitive feeling for the optimal constellations in
di�erent power regimes, the inset figures show the actual constellations that are optimal
at ≠12 dBm, ≠7.5 dBm, ≠4.5 dBm, and ≠1 dBm. The constellations are shown with
their optimized radius vector for the corresponding input power.

We also perform an optimization only over l assuming that the radius vector is uniform.
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Figure 8: Results for the constellation optimization with M = 8. The fiber length is L =
7000 km.

The results are depicted in Fig. 9. To facilitate a better comparison with the jointly
optimized constellations, the solid black line in Fig. 8 is again plotted in Fig. 9. The
dashed lines in Fig. 9 show the SEP of the APSK constellation with a fixed parameter
l and assuming a uniform radius vector. An important observation here is that up to
an input power of ≠3.5 dBm, there is almost no di�erence between the performance of
the jointly optimized constellations and the optimal constellations obtained assuming a
uniform radius vector, suggesting that most of the performance improvement is due to
optimizing the parameter l.

16 Points

Motivated by the results obtained for M = 8, for M = 16 points, we limit ourselves to
the case where the radius vector is assumed to be uniform for all constellations. The fiber
length is L = 5500 km and the input power P is varied from ≠14 dBm to 10 dBm in steps
of 2 dBm. The results are shown in Fig. 10, where we indicate the optimal parameter l

next to the corresponding marker of the curve. The individual SEP under TS detection
for 16-QAM, uniform (4, 4, 4, 4)-APSK, and (116)-APSK are shown for comparison, while
the SEP under ML detection for 16-QAM in an AWGN channel is shown as a reference.
The results in Fig. 10 show that up to an input power of ≠8 dBm, the performance of the
optimized constellations follows closely the performance of 16-QAM in AWGN. In other
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Figure 9: Results for the constellation optimization with M = 8 (white circles) assuming that
a uniform radius vector for all constellations. The fiber length is L = 7000 km.
The results of the joint optimization from Fig. 8 (black markers) are shown for
comparison. The dashed lines correspond to the SEP of the constellations that are
indicated by the labels.

words, for this power regime it is possible to find APSK constellations with TS detection
that perform as well as 16-QAM for a channel without nonlinear impairments under ML
detection. For higher input power, the optimized constellations gradually utilize more
amplitude levels, due to the increase in NLPN. If we take as a baseline the minimum SEP
achieved by the 16-QAM constellation (P ¥ ≠2.8 dBm and SEP ¥ 10≠2), and interpolate
the optimal APSK performance for the same SEP, we observe that a performance gain
of 3.2 dBm is achieved.

In order to verify the assumption that a joint optimization approach does not lead
to significant performance gains, we also perform a reduced complexity approach to the
joint optimization, where the optimization is restricted to constellations with at most
N = 6 rings. This makes the results meaningful only for low and moderate input power
(P Æ 0 dBm), because, as we have seen previously, for higher input power, the dominance
of the NLPN dictates the use of more amplitude levels to achieve good performance. The
results are also shown in Fig. 10 for P Æ 0 dBm (diamond markers). It can be seen that
the jointly optimized constellations with the additional constraint N Æ 6 follow closely
the performance of the constellations obtained for a uniform radius vector, confirming
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Figure 10: Results for the constellation optimization with M = 16. The SEP under TS detec-
tion for 16-QAM, uniform (4, 4, 4, 4)-APSK, and (1

16

)-APSK are shown for compar-
ison. The SEP under ML detection for 16-QAM in an AWGN channel (dash-dotted
line) is shown as a reference.

that the joint optimization only yields negligible performance improvements for this
power regime. For higher input power, the obtained jointly optimized constellations
perform worse than the optimal constellations obtained with a uniform radius vector,
which is simply due to the restriction to six rings.

Finally, the phenomenon of sacrificial points discussed previously also generalizes to
entire rings, i.e., when optimizing the radius vector of constellations with more than
one point in the outer ring. In this case, however, the SEP still exhibits a minimum.
As an example, in Fig. 11 we show the result of the radius optimization for (4, 4, 4, 4)-
APSK (top) together with the optimal radius vector (bottom). The radius vector r is
plotted in a normalized fashion r̃ = r/

Ô
P (i.e.,

q
N

i=1 l
i

r̃2
i

= 1), so that the e�ect is more
clear. It can be observed that up to an input power of 4 dBm the distance between any
two adjacent rings for the optimal radius vector is approximately the same. Moreover
the distance decreases with higher input power (like “squeezing accordion pleats” [31]).
However, for P > 4 dBm the optimal radius vector changes significantly. Somewhat
counterintuitively, in this power regime, is is better to place the four points in the outer
constellation ring far away from the other rings.
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Figure 11: Illustration of a sacrificial ring which occurs for the radius optimization of (4, 4, 4, 4)-
APSK for P > 4 dBm. The system length is L = 7000 km.

5 Binary Labelings
In order to allow for the transmission of binary data, we assume that each symbol x

i

œ X
is labeled with a binary vector c

i

= (c
i,1, . . . , c

i,m

) œ {0, 1}m, where m = log2 M . The
di�erent binary vectors are the binary representations of the integers {0, 1, . . . , M ≠ 1}.8
A specific mapping between vectors and constellation symbols is called a binary labeling,
which will be denoted by an M ◊ m matrix L

m

= (cT

1 , . . . , c

T

M

)T .
A Gray labeling is obtained if the binary vectors of neighboring symbols, i.e., symbols

that are closest in terms of Euclidean distance, di�er by only one bit position. As an
example, the Gray labeling G

m

for (M)-APSK constellations9 may be constructed by
m ≠ 1 recursive reflections of the trivial labeling G1 = (0, 1)T . To obtain G

m+1 from G
m

by reflection, generate the matrix (cT

1 , . . . , c

T

M

, c

T

M

, . . . , c

T

1 )T and add an extra column

8One may arbitrarily choose c

i,1

as the most significant bit.
9Di�erent Gray labelings exist for a given constellation and for simplicity we restrict ourselves to G

m

,
which is referred to as the binary reflected Gray code (BRGC) in the literature: It is the provably
optimal Gray labeling for PSK constellations in an AWGN channel at high SNR [40].
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from the left, consisting of M zeros followed by M ones [40].

5.1 Bit Error Probability
The average BEP of the signal constellation is given by

BEP = 1
mM

Mÿ

i=1

Mÿ

j=1

j ”=i

dH(c
i

, c

j

) · P
iæj

, (A.19)

where dH( · , · ) denotes the Hamming distance between two binary vectors. A lower
bound for the BEP is SEP/m Æ BEP, which directly follows from 1 Æ dH(c

i

, c

j

), i ”= j.
The probabilities P

iæj

are fixed for a given constellation and P and L (cf. (A.5)),
hence (A.19) depends only on the labeling. However, it is important to realize that the
phase o�set vector Ï has an e�ect on these probabilities for j ”= i. Therefore, even though
two APSK constellations with the same l and r but di�erent Ï have the same SEP, they
may have a di�erent BEP. In the following, we show how to exploit this new degree of
freedom for a class of APSK constellations that permit the use of a Gray labeling.

5.2 Rectangular APSK
APSK constellations with 1 < N < M , Ï = 0 and l , l

k

= M/N , 1 Æ k Æ N , have
a “rectangular” structure when plotted in polar coordinates. For these constellations, a
Gray labeling is given by L

m

= Glog
2

N

¢ Glog
2

l

, where ¢ is the ordered direct product,
defined as

(aT

1 , . . . , a

T

p

)T ¢ (bT

1 , . . . , b

T

q

)T = (cT

1 , . . . , c

T

pq

)T , (A.20)

where c

qi+j

= (a
i

, b

j

), for 1 Æ i Æ p and 1 Æ j Æ q. This amounts to independently
choosing a Gray labeling for the radius and phase coordinates of the constellation and
then concatenating the binary vectors. In Fig. 12(b) (top) an example for such a con-
struction is shown.

Gray labelings ensure that for a standard AWGN channel the BEP closely approaches
the lower BEP bound for high SNR in Sec. 5.1. Using the same labeling in a nonlinear
channel, however, does not necessarily ensure good performance since it is constructed
without considering the underlying PDF of the observation. From Fig. 3 it is evident
that this PDF has a rather unusual shape, due to the slicing e�ect caused by the post-
compensation. To further illustrate this point, consider (4, 4)-APSK with r1/r2 = 0.424
and Ï = (0, 0), operating at L = 7000 km and P = ≠5 dBm, which is the optimal
APSK constellation for these parameters (cf. Fig. 8). The PDF of Ỹ conditioned on
one point in each ring10 is evaluated and plotted in polar coordinates, as shown in Fig.
12(a) for x3 and x7. The solid lines correspond to the decision boundaries of the TS
10The PDFs conditioned on all other points can be obtained by a phase translation. Note that the PDF

is periodic in phase.

A22



5 Binary Labelings

r

'

0

⇡/2

⇡

3⇡/2

2⇡

0 1

1

1

0

1

0

0

1

0

1

0

r1 r2

x1

x2

x3

x4

(x1)

x5

x6

x7

x8

(x5)

(a) Illustration in polar coordinates

000

110

011

101

001

100

010

111

000

100

011

111

001

101

010

110

modified

Gray

(b) Labeled Const.
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(red) for L = 7000 km and P = ≠5 dBm. Solid lines correspond to the
decision boundaries of the TS detector and dotted lines show connections between
neighboring symbols according to the PDF.

detector. Recalling that the symbol transition probabilities are obtained through inte-
gration of the PDF over the detector regions (cf. (A.5)), Fig. 12(a) can then be used
to identify “neighboring symbols” of x3 and x7 (and consequently of all points) in the
sense that the corresponding transition probabilities will dominate in (A.19). The main
observation here is that, even though x3 and x7 are adjacent symbols in radial direction,
the corresponding transition probabilities, i.e., P3æ7 and P7æ3, are negligible compared
to P3æ8 and P7æ2, respectively. The dotted lines in Fig. 12(a) show appropriate con-
nections between neighboring symbols taking into account the nonlinear PDF. In Fig.
12(b) the (4, 4)-constellation is shown with the Gray labeling G1 ¢ G2 (top) and the
modified labeling (bottom) that results from “following” the dotted lines in Fig. 12(a)
and concatenating the binary vectors.

Observe that the labeled constellation in the bottom of Fig. 12(b) may be obtained
from the Gray labeled constellation by using a phase o�set vector of Ï = (0, fi/2): In this
case, the non-zero phase o�set in the second ring does not change the constellation (i.e.,
the set of symbols), but rather leads to a di�erent indexing of symbols (cf. Sec. 2.2),
and consequently to a di�erent mapping between symbols and binary vectors. Going one
step further, we now allow for arbitrary phase o�sets in all constellation rings11, with the
intention to “steer” the phase decision boundaries such that they are roughly symmetric
around the PDF. Starting from a Gray labeled rectangular APSK constellation, a simple

11Note that an APSK constellation with Ï ”= 0 is not necessarily rectangular anymore.
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Figure 13: Average BEP and lower bounds (LB) for M = 8 and L = 7000 km for di�erent
APSK constellations. The subfigures show the optimized APSK constellations for
the corresponding input power.

way to achieve this is by initializing Ï1 = 0 and then calculating

Ï
i

= ◊
c

(µ
i≠1, r

i≠1) ≠ ◊
c

(µ
i≠1, r

i

) + Ï
i≠1, (A.21)

for i = 2, . . . , N . For the previous example, evaluating (A.21) for i = 2 results in
Ï2 ¥ 1.878, corresponding to the length of the dashed, grey arrow in 12(a). The two
dashed, grey lines are the new phase decision boundaries for x7 and it can be seen that
they appear roughly symmetric around the blue PDF. We highlight that this proposed
method to determine the phase o�set vector may be applied to any rectangular APSK
constellation of arbitrary constellation size, provided that M is a power of 2.

5.3 Results and Discussion
In Fig. 13, the lower bound (LB) for the BEP is plotted for (4,4)-APSK with optimized
r and L = 7000 km (black, dashed line). The average BEP of the labeled constellation
is shown with the proposed phase o�set vector (red markers) and Ï = 0, resulting in
the conventional Gray labeling (blue, dashed line). The performance with the proposed
method is almost indistinguishable from the lower bound and a gain of approximately
0.4 dB is visible at SEP = 10≠3 over the Gray labeling approach.
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Moreover, in Fig. 13 we plot the LB based on the jointly optimized APSK constella-
tions with M = 8 (cf. Fig. 8), where the subfigures are provided to show the optimal
parameter l for the di�erent input powers. For each input power, the optimal labeling is
determined exhaustively12 and the corresponding BEP is shown by the green line. Note
that the LB is tight only for the rectangular (4, 4)-APSK. The results demonstrate that
first optimizing the constellation with respect to SEP and then choosing an optimal la-
beling does not guarantee to give the best BEP performance. In particular, for ≠7 dBm
and ≠6.5 dBm, (4,4)-APSK with the proposed phase o�set vector achieves a lower BEP
than the jointly optimized constellations (with respect to SEP) with an optimal labeling.

As a last point, one might argue that the class of rectangular APSK constellations is
not particularly interesting, because they appear rarely as optimal APSK constellations
with respect to SEP (e.g., for M = 8 they only appear in a small power range and for
M = 16 they do not appear at all). However, the previous results show that if we take the
BEP as the main figure of merit, rectangular APSK constellations may be advantageous
in certain power regimes, because they can closely approach the lower BEP bound.
Moreover, as we described earlier, the proposed labeling method is easily applicable to
any constellation size. It would therefore be relatively simple to find optimal rectangular
APSK constellations for M > 16 because in this case not many choices exist. Obviously,
these constellations might then be far away from the performance of the true optimal
constellation, but they might still o�er a significant performance gain over rectangular
QAM constellations in the presence of NLPN, with the advantage that a constructive
labeling method is readily available.

6 Conclusion
In this paper, we optimized APSK constellations for a fiber-optical channel model with-
out dispersion. It was shown how to derive the PDF of the postcompensated observation
assuming a TS detection scheme. The PDF was used to gain insight into the performance
behavior with respect to optimal detection and to calculate the BEP. Optimal APSK
constellations under TS detection have been presented. For M = 16 constellation points,
significant performance improvements in terms of SEP can be achieved by choosing an
optimized APSK constellation compared to a baseline 16-QAM constellation. For very
high input power, we showed that sacrificing points or constellation rings may become
beneficial. Finally, the binary labeling problem was discussed and a constructive la-
beling method was presented, which is applicable to rectangular APSK constellations.
An important topic for future work would be the investigation of the influence of fiber
chromatic dispersion and nonlinearities on the optimal signal set.

12It was pointed out in [41] that, in general, the labeling problem falls under the category of quadratic
assignment problems, and as such, is NP-hard.
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1 Introduction

Abstract

A low-complexity detector is introduced for polarization-multiplexed
M -ary phase shift keying modulation in a fiber-optical channel impaired
by nonlinear phase noise, generalizing a previous result by Lau and
Kahn for single-polarization signals. The proposed detector uses phase
compensation based on both received signal amplitudes in conjunc-
tion with simple straight-line rather than four-dimensional maximum-
likelihood decision boundaries.

1 Introduction
The Manakov equation describes the propagation of a polarization-multiplexed signal
in a fiber-optical channel. Two major impairments, linear chromatic dispersion and the
Kerr nonlinear e�ect, are modeled by this equation. The nonlinear e�ect causes a phase
rotation proportional to the field instantaneous power. The interaction of the signal and
the amplified spontaneous emission (ASE) noise generated by optical amplifiers due to
the nonlinear Kerr e�ect gives rise to nonlinear phase noise (NLPN). NLPN imposes a
major degradation in the performance of coherent optical data transmission systems.

Bononi et al. [1] investigated the e�ect of NLPN on popular modulation formats for
single-channel and wavelength-division multiplexing systems in a dispersion-managed
fiber link. The performance of orthogonal frequency-division multiplexing systems in the
presence of NLPN has been evaluated in [2] by theoretical, numerical, and experimental
approaches. In [3], [4, ch. 4], comprehensive surveys of known techniques for the analysis
and characterization of NLPN and its impact on the system performance are provided.

The statistics of NLPN and the detector design for a channel with NLPN have been
studied in [5–7] by analytical approaches and in [8] by numerical methods. The joint
probability density function (pdf) of the received amplitude and phase given the ini-
tial amplitude and phase of the transmitted signal and the optical signal-to-noise ratio
(OSNR) is derived in [5,9,10] [4, pp. 157, 224–225] for a fiber-optical channel with NLPN
caused by distributed or lumped amplification. Moreover, compensation of NLPN has
been studied in [11] based on the aforementioned pdf.

In this paper, we extend the detector structure introduced for a single polarization
(SP) M -PSK system in [11] to polarization-multiplexed (PM) M -PSK, using the signal
statistics derived in [12]. To this end, we first introduce a simplified approach to repro-
duce the result in [11] for the SP case. This method can be easily used to extend the
result to the PM case and can also be applied to both lumped and distributed amplifica-
tion. For simplicity, we assume single-channel transmission and inter-channel e�ects are
not taken into consideration. The symbol error rate (SER) of the proposed detector is
compared to the performance of the maximum-likelihood (ML) detector for PM-4-PSK
and to the performance of the ML detector for SP-4-PSK for the same bandwidth as well
as for the same data rate.
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2 System Model and Preliminaries
We assume zero dispersion to make the analysis applicable to memoryless (nondispersive)
fiber-optical channels, similarly as in, e.g., [5, 8, 10, 11, 13]. Due to this assumption,
the subsequent analysis ignores the interaction of chromatic dispersion and nonlinearity.
The resulting model can serve as an approximation for dispersion-managed transmission
links provided that the local accumulated dispersion is su�ciently low [1,12]. For a zero
polarization-mode and chromatic dispersion fiber-optical channel, the Manakov equation
with loss included reduces to [14, ch. 6]

j
ˆE
ˆz

+ “(EE†)E + j
–

2 E = 0, (B.1)

where E = (Ex, Ey) is the polarization-multiplexed launched envelope signal into the
fiber, “ is the nonlinear coe�cient, – is the attenuation coe�cient, † denotes Hermitian
conjugation, and z is the distance from the beginning of the fiber. The solution to (B.1)
at time t can be written as [14, ch. 4]

E(z, t) = E(0, t)q(z) exp
3

j“P0(t)
⁄

z

0
q2(·) d·

4
, (B.2)

where P0(t) = |Ex(0, t)|2 + |Ey(0, t)|2 is the instantaneous launched power into the fiber
and q(z) = exp(≠–z/2) is a function that describes the power evolution.

Here, we assume a fiber link with total length L and either distributed or lumped ampli-
fication to compensate for the fiber loss perfectly. We consider ASE noise within the op-
tical signal bandwidth, i.e., ignoring the Kerr e�ect induced from out-of-band signal and
noise in the same way as in [13]. If a four-dimensional (4D) signal S = (Sx, Sy), consisting
of two two-dimensional (2D) complex signals, is transmitted, it experiences an overall
NLPN ÏNL = Ïx+Ïy. The terms Ïx and Ïy are generated by the interaction of the signal
and noise due to the Kerr e�ect in polarizations x and y, respectively. For lumped ampli-
fication and a link consisting of N spans, ASE noise ni

x, i = 1, . . . , N , with variance ‡2
0 is

added after each span.1 One may use (B.2) to obtain Ïx = “Le�
q

N

i=1 |Sx +
q

i

l=1 nl

x|2,
where Le� = (1 ≠ exp(≠–L/N))/– is the e�ective nonlinear length. It is clearly seen
that signals in both polarizations contribute to the generated NLPN ÏNL. The received
electric field E can be written as E = Êe≠jÏ

NL , where Ê = S +
q

N

i=1 ni is the linear
part of the electric field and ni = (ni

x, ni

y). One may regard distributed amplification as
lumped amplification with an infinite number of spans. This gives lim

NæŒ NLe� = L.
In this case, a continuous amplifier noise vector n(z) = (nx(z), ny(z)) is considered. The
elements of this vector are zero-mean complex-valued Wiener processes [4, p. 154] with
autocorrelation function E[nx(z1)nú

x(z2)]= ‡2
dmin(z1, z2), where ‡2

d = 2h‹optW–nsp [11],
h‹opt is the energy of a photon, nsp is the spontaneous emission factor, and W is the

1Throughout the paper, we give expressions for polarization x only, if polarization y has an equivalent
expression.
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bandwidth of the optical signal. The SNR vector is defined as fl = (flx, fly) where flx is
|Sx|2/(L‡2

d) or |Sx|2/(N‡2
0) for distributed or lumped amplification, respectively. The

normalized received amplitude rx is denoted by |Ex|/(‡d
Ô

L) or by |Ex|/(‡0
Ô

N) for
distributed and lumped amplifications.

The joint pdf of the received phase vector ◊ = (◊x, ◊y) and the normalized amplitudes
r = (rx, ry) of a zero-dispersion fiber-optical channel is [12]

f�,R(◊, r) = fR(r)
4fi2 + 1

2fi2

Œÿ

k

x

=1
Re

)
Ck

x

(r)ejk

x

◊

x

*

+ 1
2fi2

Œÿ

k

x

=1

Œÿ

k

y

=1
Re

Ó
Ck(r)ejk · ◊ + Ckú(r)ejkú · ◊

Ô

+ 1
2fi2

Œÿ

k

y

=1
Re

)
Ck

y

(r)ejk

y

◊

y

*
, (B.3)

where fR(r) is the joint pdf of the two normalized independent Ricean random variables
rx and ry, and the Fourier coe�cients Ck(r) are given in [12]. In (B.3), we assume the
transmitted phase vector to be (0, 0). Due to the rotational invariance of the channel,
the pdf for an arbitrary transmitted phase vector (◊0,x, ◊0,y) is obtained by replacing ◊x
and ◊y in (B.3) with ◊x ≠ ◊0,x and ◊y ≠ ◊0,y, respectively.

For an SP scheme, the joint pdf of the phase and the normalized amplitude of the
received signal in the corresponding polarization is simplified to [4, ch. 5]

f�,R

(◊, r)= f
R

(r)
2fi

+ 1
fi

Œÿ

k=1
Re

)
C

k

(r)ejk◊

*
, (B.4)

where f
R

(r) is the Ricean pdf of the amplitude r, and the Fourier coe�cients C
k

(r) are
given in [12] for both types of amplifications. Again, the transmitted phase in (B.4)
is assumed to be 0, and the pdf for an arbitrary transmitted phase ◊0 is obtained by
replacing ◊ with ◊ ≠ ◊0.

In the following, we consider M -PSK constellations with s
k

=
Ô

Es exp
!
j fi

M

(2k + 1)
"
,

k = 0, . . . , M ≠ 1, where Es is the average energy of the constellation.

3 The ML Receiver for SP-M-PSK
For SP-M -PSK, the optimal decision (Voronoi) regions for the received constellation
have spiral shape (cf. [11, Fig. 1]), and hence ML detection is computationally complex.
To decrease the complexity of the detector, Lau and Kahn showed that straight-line
decision boundaries can be used, provided that an amplitude-dependent phase rotation
◊c is applied before detection [11]. The corresponding receiver structure is illustrated in
the top half of Fig. 1(a). It can be seen that the phase rotation is solely a function of the
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Figure 1: Receiver for PM-M -PSK with (a) separate detection (PM-Det1) and (b) joint cal-
culation of the amplitude-dependent phase rotations (PM-Det2).

received amplitude in one polarization and a simple ML detection of M -PSK for additive
white Gaussian noise (AWGN) with straight-line decision boundaries is subsequently
performed.

In this section, we introduce a new approach to derive the optimal phase rotation as
a function of the received amplitude. In contrast to [11], this approach can be easily ex-
tended to PM-M -PSK. For a transmitted phase of ◊0 = 0, we assume that the conditional
pdf f�|R(◊|r) of the received phase ◊ given the received amplitude r is approximately
symmetric around ◊max(r), where ◊max(r) denotes the phase value where f�|R(◊|r) is
maximum. This assumption is motivated by inspection of the pdf and its validity is jus-
tified later by the obtained results. In fact, an equivalent approximation was also done
in [11, App. A]. This assumption is used for both distributed and lumped amplifications.

Lemma 1: Let f
X

(x) be the (periodic) pdf of a random angle X. Furthermore, let
the pdf be symmetric around x

max

œ (≠fi, fi], the value where f
X

(x) has its maximum. If
the pdf decreases monotonically from x

max

to x
max

± fi, then x
max

= ≠ arg �
X

(1), where
�

X

(‹) is the (discrete) characteristic function (CF) of X.

Proof. Define X̃ = X ≠ xmax. Since the pdf of X̃ is an even function, its CF is real.
Furthermore, the CFs of X and X̃ are related via �

X

(‹) = �
X̃

(‹)e≠j‹x

max . Letting ‹ = 1
and solving for xmax gives xmax = arg �

X̃

(1) ≠ arg �
X

(1). Thus, it needs to be shown
that arg �

X̃

(1) = 0. Having already established that �
X̃

(1) is real, we only need to show
that it is also positive. This follows from the definition �

X̃

(1) =
s

fi

≠fi

f
X̃

(x) cos(x) dx and
the fact that f

X̃

(x) is nonnegative and decreases monotonically from 0 to ±fi.

Using Lemma 1, one can compute the rotation of the M -PSK ML decision boundaries
due to NLPN as described in the following theorem.

Theorem 1: Consider a memoryless fiber-optical channel with NLPN. The decision
boundary of the ML detector for SP-M -PSK between symbols s

k

and s
k+1 has the polar

coordinates (r, ◊
b

(k, r)), where ◊
b

(k, r) = ≠C1(r) + 2k/M for r Ø 0 and C1 is the first
Fourier coe�cient in (B.4).

Proof. The ML decision boundary between the two symbols of the M -PSK constellation
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with k = 0 and k = M ≠ 1 is determined in such a way as to satisfy

f�|R,�
0

(◊c(r) | r, ≠ fi

M

) = f�|R,�
0

(◊c(r) | r, fi

M

).

Using the symmetry of f�|R,�
0

(◊|r, ◊0) around ◊max(r) + ◊0, we obtain ◊c(r) = ◊max(r).
Using Lemma 1, we get ◊max(r) = ≠ arg ��|R,�

0

(1 | r, 0) = ≠ arg C1(r).

4 Receivers for PM-M-PSK
For a fixed state of polarization, we receive two dependent 2D symbols, which have been
rotated by the NLPN equally. Using (B.3), the ML detector in this case can be written
as

◊̂0 = arg max
◊

0

f�,R|�
0

(◊, r|◊0). (B.5)

The optimization is performed over all possible M2 transmitted phase combinations for
a PM-M -PSK signal. We refer to this detector as “PM-ML”.

A simple, but clearly suboptimal, way to reduce the complexity of solving (B.5) is
to treat the received signals in both polarizations independently. In other words, the
marginal pdfs f�

x

,R

x

(◊x, rx) and f�
y

,R

y

(◊y, ry) are used to perform detection separately
in each polarization, which leads again to spiral-shaped decision boundaries as in Sec. 3.
Equivalently, one may extend the receiver structure for SP in a straightforward manner
as shown in Fig. 1(a), where a di�erent rotation angle is applied to each received symbol,
based on the received amplitude in the corresponding polarization. Using Theorem 1,
the computation of the rotation angles is then based on the first Fourier coe�cient of
the two marginal pdfs. We refer to this detector as “PM-Det1”.

As seen in (B.2), the phase rotation due to the nonlinear Kerr e�ect is a function of the
signal amplitudes in both polarizations. Hence, one may improve the performance of PM-
Det1 by taking into account the amplitudes of both polarizations in computing the phase
rotation. To this end, we use the same symmetry assumption as in the previous section for
f�

x

|R(◊|r) = f�
x

,R(◊, r)/fR(r), where f�
x

,R(◊, r) is the marginal of (B.3) with respect
to �y, i.e., we assume that f�

x

|R(◊|r) is symmetric around the phase for which this
pdf is maximum. This assumption allows us to describe the decision boundaries of the
PM-M -PSK signal distorted by NLPN in each polarization as the rotated version of the
straight-line decision boundaries for an AWGN channel.

Theorem 2: The decision boundaries of the detector given by

◊̂0,x

= arg max
◊

0,x

f�
x

,R|◊
0,x

(◊
x

, r|◊0,x

) (B.6)

for polarization x can be transformed to straight lines using the phase rotation given by

◊c

x

(r) = ≠ arg C(1,0)(r), (B.7)

B7



Paper B

(a) no comp. (b) ◊

c

x

= f(r
x

) (c) ◊

c

x

= f(r)

Figure 2: Scatter plots in the x polarization for (a) no compensation, (b) compensation ac-
cording to Fig. 1(a), and (c) according to Fig. 1(b). Decision boundaries in (b) and
(c) are straight lines. In (a), the boundaries are spiral shaped and depend on the
received amplitude in the y polarization.

where C(1,0)(r) is the Fourier coe�cient appearing in (B.3) with k

x

= (1, 0). Similarly,
the rotation for polarization y is obtained as ◊c

y

(r) = ≠ arg C(0,1)(r).

Proof. One may follow an analogous approach as in the proof of Theorem 1, by replacing
f�

x

|R(◊|r) with f�|R(◊|r) to show that the decision boundary between symbols S
x

= s
k

and S
x

= s
k+1 in polarization x has the parametric description rx exp(j◊c

x(r)+2jkfi/M).

The proposed detector implementing (B.6) via this phase rotation method is referred
to as “PM-Det2” and shown in Fig. 1(b). It can be seen that the rotation angle in each
polarization is computed using the received amplitudes r. It is worth mentioning that
since the rotation is an invertible operation, joint 4D demodulation is still possible after
the rotation. For complexity reasons, however, we perform hard decision on each 2D soft
symbol using simple straight-line decision boundaries as shown in the figure.

In Fig. 2, a qualitative comparison of the two di�erent rotation schemes corresponding
to PM-Det1 and PM-Det2 is shown. Fig. 2(a) shows a scatter plot of the received symbols
in polarization x directly after the channel, i.e., no phase compensation is assumed. In
Fig. 2(b), a phase rotation of each received symbol is applied, which is solely based on the
corresponding received amplitude of this symbol (PM-Det1). Lastly, Fig. 2(c) shows the
result of applying a phase rotation that is based on the received amplitude of the received
symbols in both polarizations (PM-Det2). Observe that the second rotation method leads
to a notably smaller phase variance compared to the first method. However, it should
be mentioned that the receiver structure shown in Fig. 1(b) does not correspond to
the ML receiver for PM-M -PSK, since the residual phases in both polarizations after
the rotation are not statistically independent. The performance loss compared to ML
detection is quantified in the next section.
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5 Performance Analysis
The SER of PM-M -PSK for PM-Det1 and PM-Det2 can be computed analytically. After
the introduced phase rotations, the marginal pdf of the phase in polarization x, given
that the phase of the transmitted signal is zero, is obtained by replacing ◊x with ◊Õ

x ≠ ◊c
x

in f�
x

|R(◊|r) and then integrating out the radii rx and ry over [0, +Œ) to get

f�Õ
x

(◊) = 1
2fi

+ 1
fi

Œÿ

k=1
cos(k◊)

Œ⁄

0

Œ⁄

0

|C(k,0)(r)|drxdry. (B.8)

Here, we only show how to compute the SER of PM-Det2 for a PM-M -PSK system. An
analogous derivation can be applied for PM-Det1. One can write

SERx = 1 ≠
⁄ fi

M

≠ fi

M

f�Õ
x

(◊)d◊ = M ≠ 1
M

≠

Œÿ

k=1

2sinc
!

k

M

"

M

⁄ Œ

0
|Cx

(k,0)(rx)|drx

⁄ Œ

0
|Cy

(k,0)(ry)|dry,

where Cx
(k,0) and Cy

(k,0) are computed using [12, eq. (26)].
In Fig. 3(a), the performance of PM-4-PSK is evaluated using the above analytical

approach for PM-Det1 and PM-Det2. The SER of the ML detector defined by (B.6)
is given by a four-dimensional integral of the pdf over the ML decision regions. This
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SER, estimated by Monte-Carlo integration, is also shown in Fig. 3(a). Moreover, we
compute the SER of SP-4-PSK to compare with SP data transmission in two di�erent
scenarios: (i) For the same data rate per polarization (i.e., the same bandwidth) and
(ii) for the same total data rate as the PM case. This evaluation is done for distributed
amplification with channel parameters L = 9000 km, “ = 1.4 W≠1km≠1, Rs = 28
Gbaud, ‹opt = 193.55 THz, – = 0.25 dB/km, and F

n

= 6 dB. As seen in Fig. 3(a),
the PM schemes show negligible performance degradation in the linear regime for a
fixed bandwidth (case (i)), i.e., for Pt < ≠15 dBm, compared to the SP scheme. For
a fixed data rate (case (ii)), one may observe a 2 dB performance improvement using
PM-Det2, at a SER of 1.5 ◊ 10≠2. In the strongly nonlinear regime, the SP scheme is
superior to PM at the expense of losing half of the data rate. Furthermore, in the linear
regime, the SP scheme in case (i) and the PM scheme have the same performance and
their SER curves overlap, while in the strongly nonlinear regime, the SER of the PM
scheme converges to the SER of the SP scheme in case (ii). This is because the system
performance is intimately related to the product of the noise variance and the transmit
power in the nonlinear regime, which is the same for these two scenarios. Fig. 3(a)
also indicates that in the linear regime, the detectors PM-Det2 and PM-Det1 perform
similarly. However, the reduction in circular variance observed in Fig. 2 translates into a
noticeably better SER in the nonlinear regime for PM-Det2 when compared to PM-Det1.
In the region of interest, i.e., SNRs around ≠10 dBm, the performance degradation of
PM-Det2 compared to the ML detector is 0.7 dB. This is due to independent detection of
phase information in the two polarizations. In Fig. 3(b), we also show the performance
of DP-Det1 and DP-Det2 for a dispersion-managed link using the split step Fourier
method. The system parameters are the same as before, but now we assume 45 fiber
spans of length 90 km and a lumped amplification scheme. Dispersion is compensated
after each span using an ideal dispersion-compensating fiber. The symbol rate is varied
between 0.5 and 5 Gbaud to determine the robustness of the detector with respect to
residual dispersion. The memoryless pdf loses its accuracy for high symbol rates due to
the strong interaction between nonlinearities and dispersion and therefore the superiority
of the proposed detector disappears for these parameters and symbol rates higher than 3
Gbaud. Similar observations regarding the accuracy of the memoryless model have been
made in [12].

6 Conclusion
A low-complexity detector is proposed for memoryless polarization-multiplexed fiber-
optical channels by compensating the amplitude-dependent NLPN. The compensation is
performed by a phase rotation of the received symbols depending on the amplitudes in
both polarizations. The performance results confirm the superiority of PM schemes to
SP for the same data rate.
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1 Introduction

Abstract

Soft forward error correction with higher-order modulations is often
implemented in practice via the pragmatic bit-interleaved coded mod-
ulation paradigm, where a single binary code is mapped to a nonbinary
modulation. In this paper, we study the optimization of the mapping
of the coded bits to the modulation bits for a polarization-multiplexed
fiber-optical system without optical inline dispersion compensation.
Our focus is on protograph-based low-density parity-check (LDPC)
codes which allow for an e�cient hardware implementation, suitable
for high-speed optical communications. The optimization is applied
to the ARJ4A protograph family, and further extended to protograph-
based spatially coupled LDPC codes assuming a windowed decoder.
Full field simulations via the split-step Fourier method are used to ver-
ify the analysis. The results show performance gains of up to 0.25 dB,
which translate into a possible extension of the transmission reach by
roughly up to 8%, without significantly increasing the system complex-
ity.

1 Introduction
There is currently a large interest in developing practical coded modulation (CM) schemes
that can achieve high spectral e�ciency close to the ultimate capacity limits of optical
fibers [1]. Pragmatic bit-interleaved coded modulation (BICM) in combination with low-
density parity-check (LDPC) codes is one of the most popular capacity-approaching CM
techniques for achieving high spectral e�ciency, due to its simplicity and flexibility [2].
For a BICM system, a helpful abstraction is to think about transmitting data using a
single forward error correction (FEC) encoder over a set of parallel binary-input chan-
nels, or simply bit channels, with di�erent qualities. This is due to the fact that bits
are not protected equally throughout the signal constellation. With this useful picture,
an immediate problem is how to best allocate the coded bits from the encoder to these
channels. As a baseline, a random or consecutive/sequential mapper1 is commonly em-
ployed in practice. However, by optimizing the bit mapper, one can improve the system
performance, at almost no increased complexity cost. While BICM has been studied for
fiber-optical communications by many authors, see e.g., [3] or [4] and references therein,
to the best of our knowledge, optimized bit mappers have not yet been considered for
such systems.

In this paper, we address the bit mapper optimization for a BICM system based
on LDPC codes in the context of long-haul fiber-optical communications. Our target

1In the literature, the term “bit interleaver” is also frequently used.
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system operates over a communication link with a lumped amplification scheme and
without optical inline dispersion compensation. In general, the signal undergoes a com-
plicated evolution and interacts with amplified spontaneous emission (ASE) noise and
co-propagating signals through dispersive and nonlinear e�ects. For dispersion uncom-
pensated transmission, it has been shown that an additive Gaussian noise (GN) model
can be assumed, provided that dispersive e�ects are dominant and nonlinear e�ects are
weak [5, 6]. We use the GN model for our analysis, which accounts for both the ASE
noise from inline erbium-doped fiber amplifiers (EDFAs) and nonlinear noise due to the
optical Kerr e�ect.

The starting point for the optimization problem is a fixed modulation format and a
given error correction code, i.e., we do not consider the joint design of the modulation,
bit mapper, and code. This scenario is often encountered in practice when the modu-
lation and code have been designed separately and/or are predetermined according to
some communication standard. Our focus is on protograph-based LDPC codes [7], which
are very attractive from a design perspective and allow for a high-speed hardware im-
plementation, suitable for fiber-optical communications [8]. A protograph is a (small)
bipartite graph, from which the Tanner graph defining the code is obtained by a copy-
and-permute procedure. As one illustrative example for protograph-based codes, we
consider the ARJ4A protographs developed by researchers from JPL/NASA in [9]. We
also consider bit mapper optimization for protograph-based spatially coupled low-density
parity-check (SC-LDPC) codes using the windowed decoder (WD) proposed in [10]. SC-
LDPC codes, originally introduced as LDPC convolutional codes in [11], have attracted
a lot of attention due to their capacity-achieving performance under belief propagation
(BP) decoding for a variety of communication channels [12]. SC-LDPC codes can be
constructed using protographs and they are considered as viable candidates for future
spectrally e�cient fiber-optical systems [8].

Most of the literature about bit mapper optimization deals with irregular LDPC codes
that are not based on protographs, see e.g., [13, 14]. Attempts to improve the perfor-
mance of BICM systems with protograph-based codes through bit mapper optimization
have been previously made in [15–17]. In [15], a mapping strategy inspired by the water-
filling algorithm for parallel channels called variable degree matched mapping (VDMM)
is presented. This idea is extended in [16], where the authors exhaustively search over
all possible nonequivalent connections between protograph nodes and modulation bits
showing performance improvements over VDMM. As pointed out in [17], the above ap-
proaches are somewhat restrictive in the sense that only certain protographs can be used
with certain modulation formats. A more flexible approach is proposed in [17], which is
in principle suitable for any protograph structure and modulation but relies on a larger
intermediate protograph.

Our optimization of the bit mapper is based on the decoding threshold over the ad-
ditive white Gaussian noise (AWGN) channel, assuming a fixed number of decoding
iterations. The decoding threshold divides the channel quality parameter range (in our
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case the equivalent signal-to-noise ratio (SNR) of the GN model) into a region where
reliable decoding is possible and where it is not. In the asymptotic case, i.e., assum-
ing infinite codeword length, density evolution (DE) or one-dimensional simplifications
via extrinsic information transfer (EXIT) functions can be used to find the decoding
threshold for LDPC codes under BP decoding [18]. Approximate decoding thresholds
of protograph-based codes assuming binary modulation can be obtained by using the
protograph extrinsic information transfer (P-EXIT) analysis [19]. The approach pro-
posed here is di�erent from the ones in [15–17], in the sense that the P-EXIT analysis
is modified to allow for fractional allocations between protograph nodes and modula-
tion bits. This also allows for an unrestricted matching of protographs and modulation
formats and additionally does not su�er from an increased design complexity due to a
larger intermediate protograph. We also discuss several ways to reduce the optimization
complexity, including periodic bit mappers for SC-LDPC codes with a WD. This is based
on the results we previously presented in [20], where optimized bit mappers are found
for (nonprotograph-based) SC-LDPC codes assuming parallel binary erasure channels
(BECs) without considering the WD. The use of a WD in this paper is motivated by the
reduced complexity and decoding delay with respect to full decoding. Finally, we provide
a simulative verification assuming both linear and nonlinear transmission scenarios. For
the latter case, we use the split-step Fourier method (SSFM) to show that the perfor-
mance improvements predicted from the AWGN analysis can be achieved for a realistic
transmission scenario including nonlinear e�ects.

1.1 Notation
Vectors and matrices are typeset in bold font by lowercase letters a and capital letters
A, respectively. Matrix transpose is denoted by ( · )|, Hermitian transpose by ( · )†, and
the squared norm of a complex vector by ÎaÎ2. I

n

denotes the identity matrix of size
n. Complex conjugation is denoted by ( · )ú. ”(t) is Dirac’s delta function, whereas
”[k] is the Kronecker delta. Convolution is denoted by ⇣. N0, R, and C denote the
set of nonnegative integers, real numbers, and complex numbers, respectively. Random
variables and vectors are denoted by capital letters and their realizations by lowercase
letters. The probability density function (PDF) of a random variable Y conditioned on
the realization of another random variable X is denoted by f

Y |X(y|x) and the expected
value by E[ · ].

2 System Model

2.1 Continuous-Time Channel
We consider transmission of a polarization-multiplexed (PM) signal over a standard
single-mode fiber (SSMF) with a lumped amplification scheme as shown in Fig. 1.
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Figure 1: Block diagram of the consider fiber-optical transmission system.

The optical link consists of Nsp spans of SSMF with length Lsp. The baseband sig-
nal in each polarization2 is generated via a linear pulse modulation according to s

x

(t) =q
k

s
x,k

p(t ≠ k/R
s

), where s
x,k

œ C are the information symbols, p(t) the real-valued
pulse shape, and R

s

the symbol rate. The PM signal s(t) = (s
x

(t), s
y

(t))| is launched
into the fiber and propagates according to [21, Ch. 3]

ˆv(t, z)
ˆz

= ≠– ≠ g(z)
2 v(t, z) ≠ ä

—2
2

ˆ2v(t, z)
ˆt2 + ä“v(t, z)Îv(t, z)Î2 + w(t, z), (C.1)

where v(t, z) is the complex baseband representation of the electric field and the input to
the first fiber span and the output signal are s(t) = v(t, 0) and r(t) = v(t, NspLsp), respec-
tively. In (C.1), – is the attenuation coe�cient, —2 the chromatic dispersion coe�cient,
and “ the nonlinear Kerr parameter. The terms g(z) and w(t, z) = (w

x

(t, z), w
y

(t, z))|
model the amplifier gain and the generated ASE noise [22, p. 84]. Each EDFA in-
troduces circularly symmetric complex Gaussian noise with two-sided power spectral
density (PSD) N

¸

= (G ≠ 1)h‹
s

nsp [1, eq. (54)] per polarization, where G = e–L

sp

is the amplifier gain, h is Planck’s constant, ‹
s

the carrier frequency, and nsp the
spontaneous emission factor. A standard coherent linear receiver is used, consisting
of an equalizer, a pulse-matched filter and a symbol-time sampler. This amounts to
r

x,k

= r
x

(t) ⇣ h(t) ⇣ p(≠t)|
t=k/R

s

, where the frequency response of the equalizer h(t) is
H(f) = exp(ä2—2fi2f2NspLsp).

2.2 Discrete-Time Channel
An approximate discrete-time model for the received samples r

k

= (r
x,k

, r
y,k

)| based
on the transmitted symbols s

k

= (s
x,k

, s
y,k

)| is given by r
k

¥ ’s
k

+ n
k

+ ñ
k

, where
’ œ C [5]. The term n

k

= (n
x,k

, n
y,k

)| accounts for the linear ASE noise with E[N
k

N†
k

Õ ] =
PASEI2”[k ≠ kÕ], where PASE = NspN

¸

R
s

. The term ñ
k

= (ñ
x,k

, ñ
y,k

)| accounts for
nonlinear noise with E[Ñ

k

Ñ†
k

Õ ] = ÷P 3I2”[k≠kÕ], where P = lim
T æŒ(

s
T

≠T

s
x

(t)2 dt)/(2T )
is the transmit power per polarization (assumed to be equal for both polarizations). ÷ is
a function of the link parameters –, —2, “, Lsp, Nsp and the symbol rate R

s

[5, eq. (15)],
and |’|2 = 1 ≠ |÷|P 2. The conditional PDF in this model is assumed to be Gaussian

2We give expressions for polarization x only, if polarization y has an equivalent expression.
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Figure 2: (a) BICM block diagram including the channel symmetrization technique. (b) Ap-
proximate model with parallel Gaussian LLR channels.
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Figure 3: The considered signal constellations in each dimension.

according to

fR
k

|S
k

(r
k

|s
k

) = 1
(fiPN)2 exp

3
≠Îr

k

≠ ’s
k

Î2

PN

4
, (C.2)

where PN = PASE + ÷P 3. The equivalent SNR is defined as fl , |’|2P/(PASE + ÷P 3).

2.3 Bit-Interleaved Coded Modulation
The transmitted symbols s

k

in each time instant k take on values from a discrete signal
constellation X µ C2. Each point in the constellation is labeled with a unique binary
string of length m = log2 |X |, where b

i

(a), 1 Æ i Æ m, denotes the ith bit in the
binary string assigned to a œ X . Consider now the block diagram shown in Fig. 2(a),
where the modulo 2 addition of the independent and identically distributed bits d

i,k

and
multiplication by d̄

i,k

= (≠1)d

i,k serves as a symmetrization technique [23]. At each
time instant k, the modulator � takes m bits b

i,k

, 1 Æ i Æ m, and maps them to one
of the constellation points according to the binary labeling. We consider two product
constellations of one-dimensional constellations labeled with the binary reflected Gray
code (BRGC) as shown in Fig. 3, which we refer to as PM-64-QAM and PM-256-QAM.
At the receiver, the demodulator �≠1 computes soft reliability information about the
transmitted bits in the form of the log-likelihood ratios (LLRs)

l
i,k

, log
fR

k

|B
i,k

(r
k

|0)
fR

k

|B
i,k

(r
k

|1) = log
q

sœX
i,0

fR
k

|S
k

(r
k

|s)
q

sœX
i,1

fR
k

|S
k

(r
k

|s) , (C.3)

where X
i,u

, {a œ X : b
i

(a) = u} is the subconstellation where all points have the bit u

at the ith position of their binary label.
A useful way to think about the setup depicted in Fig. 2(a) is to imagine transmitting

over a set of parallel bit channels, where one may interpret the conditional distribution
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Encoder
Bit

Mapper

u 2 {0,1}d c 2 {0,1}n to Φ,
N

symbols

b1 = (b1,1,b1,2, . . . ,b1,N)

bm = (bm,1,bm,2, . . . ,bm,N)

Figure 4: Block diagram illustrating the purpose of the bit mapper.

of the LLR f
L

i,k

|B
i,k

( · | · ) as a bit channel. In the following, we say that a bit channel
f

L|B(l|b) is symmetric if f
L|B(l|0) = f

L|B(≠l|1) and the channel is referred to as an LLR
channel if f

L|B(l|0)el = f
L|B(l|1). To simplify the analysis, the original bit channels are

replaced with parallel symmetric Gaussian LLR channels, as shown in Fig. 2(b), where
an LLR channel f

L|B(l|b) is called a symmetric Gaussian LLR channel with parameter
‡2 if L ≥ N (‡2/2, ‡2) conditioned on B = 0 and L ≥ N (≠‡2/2, ‡2) conditioned on
B = 1. In order to find a correspondence between the LLR channels f

L

i,k

|B
i,k

( · | · )
and the parameters ‡2

i

, one may match the mutual information (MI) according to ‡2
i

=
J≠1(I

i

(fl))2, where I
i

(fl) = I(B
i,k

; L
i,k

) is independent of k and J(‡) denotes the MI
between the output of a symmetric Gaussian LLR channel and uniform input bits.

Consider now the case where a binary code C µ {0, 1}n of length n and dimension d is
employed and each codeword c = (c1, . . . , c

n

) is transmitted using N = n/m symbols s
k

.
The allocation of the coded bits to the modulation bits (i.e., the di�erent bit channels in
Fig. 2(b)) is determined by a bit mapper as shown in Fig. 4, where the vectors b1, . . . , b

m

are of length N . Our goal is to find good bit mappers for a fixed code and modulation. As
a baseline, we consider a consecutive mapper according to b

i,k

= c(k≠1)m+i

for 1 Æ i Æ m,
1 Æ k Æ N .

3 Protograph-Based LDPC Codes
An LDPC code of length n and dimension d is defined via a sparse parity-check matrix
H = [h

i,j

] œ {0, 1}c◊n, where c = n≠d. There exist di�erent methods to construct “good”
LDPC codes, i.e., good matrices H. One popular method is by using protographs [7].
An LDPC code can be represented by using a bipartite Tanner graph consisting of n

variable nodes (VNs) and c check nodes (CNs), where the ith CN is connected to the
jth VN if h

i,j

= 1. A protograph is also a bipartite graph defined by an adjacency
matrix P = [p

i,j

] œ Nc

Õ◊n

Õ

0 , called the base matrix. Given P, a parity-check matrix H
is obtained by replacing each entry p

i,j

in P with a random binary M -by-M matrix
which contains p

i,j

ones in each row and column. This procedure is called lifting and
M Ø max

i,j

p
i,j

is the so-called lifting factor. Graphically, this construction amounts to
copying the protograph M times and subsequently permuting edges. Parallel edges, i.e.,
for p

i,j

> 1, are permitted in the protograph and are resolved in the lifting procedure.
The design rate of the code is given by R = 1 ≠ c/n = 1 ≠ cÕ/nÕ, where c = cÕM and
n = nÕM .
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3.1 ARJ4A Codes
As one example to illustrate the bit mapper optimization technique, we consider the
ARJ4A code family defined by the protographs in [9, Fig. 8]. The base matrix P(¸) of
the ARJ4A code ensemble with parameter ¸ œ N0 can be recursively defined via [17]

P(¸) =

Q

aP(¸≠1)
0 0
3 1
1 3

R

b , P(¸=0) =

Q

a
1 2 0 0 0
0 3 1 1 1
0 1 2 2 1

R

b (C.4)

with cÕ = 3 and nÕ = 5 + 2¸. VNs corresponding to the second column of the base matrix
are punctured, leading to a design rate of R = (1 ≠ cÕ/nÕ) · nÕ/(nÕ ≠ 1) = (¸ + 1)/(¸ + 2).

3.2 Spatially Coupled LDPC Codes
SC-LDPC codes have parity-check matrices with a band-diagonal structure (for a gen-
eral definition see, e.g., [12]). For completeness, we briefly review the construction via
protographs in [24], [10, Sec. II-B]. The base matrix P[T ] of a (J, K) regular, protograph-
based SC-LDPC code with termination length T can be constructed by specifying ma-
trices P

i

, 0 Æ i Æ ms of dimension J Õ by K Õ, where ms is referred to as the memory.
The matrices are such that P =

q
m

s

i=0 P
i

has column weight J and row weight K for all
columns and rows, respectively. Given T and the matrices P

i

, the base matrix P[T ] is
constructed as

P[T ] =

Q

ccccccccccca

P0

P1
. . .

... . . . P0

P
m

s

. . . P1

. . . ...
P

m

s

R

dddddddddddb

. (C.5)

From the dimensions of P[T ] one can infer a design rate of R(T ) = 1≠(T +ms)J Õ/(TK Õ).
As T grows large, the rate approaches R(Œ) = 1 ≠ J Õ/K Õ.

Since our goal is not to optimize the code, we rely on base matrices that have been
proposed elsewhere in the literature, in particular in combination with a WD which we
discuss below. We consider P0 = (2, 2, 2) and P1 = (1, 1, 1) according to [10, Design rule
1], where J Õ = 1, K Õ = 3, ms = 1, and R(Œ) = 2/3.

3.3 Decoding and Asymptotic EXIT Analysis
We use a modified version of the P-EXIT analysis as a tool to predict the iterative
BP performance behavior of the protograph-based codes [19]. A detailed description
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Algorithm 1: P-EXIT analysis of the WD for a (J, K) regular SC-LDPC proto-
graph.

Input: l

max

(max. iterations per window), p

tar

(target error probability), W , (J Õ
, K

Õ),
fl

Output: S (decoding success, either true or false), l

s

(iterations until successful
decoding)

1 for i = 1 to n

Õ do /* initialization of channel variances for VNs */

2 if VN i is punctured set ‡

2

i

= 0 /* treat as an erasure */

3 else set ‡

2

i

= f(fl) /* E.g.,f(fl) = 8Rfl if fl = E

b

/N

o

[25] */

4 l

s

= 0 /* total iteration counter */

5 for j = ≠W + 2 to T do
6 c

start

Ω max((j ≠ 1)J Õ + 1, 1) /* first index of active CNs */

7 c

end

Ω min((W + j ≠ 1)J Õ
, m) /* last index of active CNs */

8 v

start

Ω max((j ≠ 1)KÕ + 1, 1) /* first index of active VNs */

9 v

end

Ω min((W + j ≠ 1)KÕ
, n

Õ) /* last index of active VNs */

10 t

start

Ω max((j ≠ 1)KÕ + 1, 1) /* first index of target VNs */

11 t

end

Ω max((j ≠ 1)KÕ + K

Õ
, K

Õ) /* last index of target VNs */

12 l = 0
13 while l Æ l

max

do
14 if mean (error probability of VN t

start

to t

end

) < p

tar

break while
15 for i = v

start

to v

end

compute Messages (‡2

i

) of VN i /* Eq. (9.46) [25]

*/

16 for i = c

start

to c

end

compute Messages of CN i /* Eq. (9.47) [25] */

17 l Ω l + 1 and l

s

Ω l

s

+ 1

18 if mean (error probability of VN 1 to n

Õ) < p

tar

set S = 1 else set S = 0

of this tool for binary modulation is available in [19] and [25, Algorithm 9.2]. Here,
we only describe the necessary modifications to account for the WD and the nonbinary
modulations. We start with the former and explain the latter in the next section.

We employ the WD scheme developed in [10]. WD helps to alleviate the long decoding
delays and high decoding complexity of SC-LDPC codes under full BP decoding by
exploiting the fact that two VNs are not involved in the same parity-check equation if
they are at least (ms + 1)K Õ columns apart [10]. The WD restricts message updates to a
subset of VNs and CNs in the entire graph. After a predetermined number of decoding
iterations, this subset changes and the decoding window slides to the next position.
Pseudocode for the modified P-EXIT analysis of SC-LDPC codes accounting for the WD
is presented in Algorithm 1. The main di�erence with respect to BP decoding is the
window size parameter W , which specifies the number of active CNs in the protograph
considered in each window as a multiple of J Õ. The P-EXIT analysis for the standard
BP decoder can be recovered from Algorithm 1 by setting T = 1, W = 1, J Õ = cÕ, and
K Õ = nÕ.

C10



4 Bit Mapper Optimization

4 Bit Mapper Optimization

4.1 Asymptotic Bit Mapper Model
Each VN in the protograph represents M VNs in the lifted Tanner graph. Since a VN
corresponds to one bit in a codeword, the nÕ VNs in the protograph give rise to nÕ

di�erent classes of coded bits that are treated as statistically equivalent in the P-EXIT
analysis. In particular, for binary modulation, each protograph VN is assigned with one
input variance, corresponding to either a punctured bit or the Gaussian LLR channel (see
lines 2 and 3 in Algorithm 1). For nonbinary modulations, VNs in the same class can in
principle have di�erent input densities. Assume for example that a given protograph is
lifted with an even lifting factor M and coded bits are mapped consecutively to a 4-ary
modulation. Then, M/2 VNs in each class are allocated to the first modulation bit and
M/2 to the second.

We model the bit mapper by specifying the assignment of VN classes to the bit channels
via a matrix A = [a

i,j

] œ Rm◊n

Õ , where a
i,j

, 0 Æ a
i,j

Æ 1 ’i, j denotes the proportional
allocation of VNs from the jth class (corresponding to the jth column in the base matrix)
allocated to the ith bit in the signal constellation. The approaches in [15–17] can be
recovered by considering only nonfractional assignments, i.e., a

i,j

œ {0, 1}. In that case,
VNs of the original protograph [15, 16] or an intermediate protograph [17] are directly
assigned to the modulation bits.

We point out that, instead of interpreting a
i,j

as a deterministic fraction of VNs
in a particular class allocated to a particular channel, one should interpret a

i,j

as a
probability, and study the bit mapper as a probabilistic mapping device that assigns
coded bits randomly to channels, similar to [26]. Under this assumption, one may argue
that the VNs belonging to a certain class “see” an equivalent bit channel which is the
average of the original bit channels f

L

i,k

|B
i,k

(l|b), weighted according to the probabilities
a

i,j

. The MI of each equivalent bit channel is a weighted average of the original channels’
MI as shown in the following lemma.

Lemma 1: Let {f
L

i

|B
i

(l|b) : 1 Æ i Æ m} be a collection of symmetric LLR channels.
Consider a new channel f

L|B(l|b), where transmission takes place over the ith channel
in the collection with probability –

i

and
q

i

–
i

= 1. Then I(L; B) =
q

i

–
i

I(L
i

; B
i

) for
uniform input bits.
Proof. The channel f

L|B(l|b) is a symmetric LLR channel. The claim then follows from
f

L|B(l|b) =
q

i

–
i

f
L

i

|B
i

(l|b) and the fact that the MI between the output of a symmetric
LLR channel f

L|B(l|b) and uniform input bits is I(L; B) = 1 ≠
s Œ

≠Œ f
L|B(l|0) log2(1 +

e≠l) dl.
If we collect the MI corresponding to the original m symmetric LLR channels in a vector

I(fl) = (I1(fl), . . . , I
m

(fl)), then, multiplying I(fl) by A leads to a vector (Ĩ1, Ĩ2, . . . , Ĩ
n

Õ)
with the MIs corresponding to the averaged bit channels as seen by the nÕ VN classes.
These averaged bit channels are modeled as symmetric Gaussian LLR channels with
parameters (‡2

1 , . . . , ‡2
n

Õ). In particular, the P-EXIT analysis for nonbinary modulation
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is obtained by changing the initialization step in line 3 of Algorithm 1 and assigning
‡2

i

= J≠1(Ĩ
i

)2, where the algorithm takes A as an additional input to compute Ĩ
i

as
described.

In order to have a valid probabilistic assignment, all columns in A have to sum to one
and all rows in A have to sum to nÕ/m, i.e., we have mnÕ equality constraints in total.
The first condition ensures that, asymptotically, all VNs are assigned to a channel, while
the second condition ensures that all parallel channels are used equally often. The set
of valid assignment matrices is denoted by Am◊n

Õ µ Rm◊n

Õ . In the case of punctured
VNs, the corresponding columns in A are removed and nÕ is interpreted as the number
of unpunctured VNs.

4.2 Optimization
For a given bit mapper, i.e., for a given assignment matrix A, an approximate decoding
threshold flú(A) can be found using Algorithm 1 as follows. Fix a certain precision ”,
target bit error probability ptar, and maximum number of iterations lmax. Starting from
some SNR fl where Algorithm 1 converges to a successful decoding, S = 1, iteratively
decrease fl by ” until the decoding fails. The smallest fl for which S = 1 is declared as
the decoding threshold flú(A). For any fl Ø flú(A), we denote the number of iterations
until successful decoding by ls(A, fl).

We are interested in optimizing A in terms of the decoding threshold for a given
protograph and modulation format. The optimization problem is thus

Aopt = argmin
AœAm◊n

Õ
flú(A), (C.6)

where the baseline system realizes a mapping of coded bits to modulation bits such
that a

i,j

= 1/m, ’i, j. The corresponding assignment matrix is denoted by Auni. The
search space Am◊n

Õ can be regarded as a convex polytope P in p = (m ≠ 1)(nÕ ≠ 1)
dimensions by removing the last row and column in A, replacing the equality constraints
with inequality constraints, and writing the matrix elements in a vector x œ Rp according
to the prescription x(i≠1)n

Õ+j

= a
i,j

for 1 Æ i Æ m ≠ 1 and 1 Æ j Æ nÕ ≠ 1. While the
search space is convex, one can show by simple examples that the objective function
is nonconvex in P. In the following, we discuss ways to obtain good bit mappers with
reasonable e�ort. We also remark that some of the optimization approaches proposed
previously in the context of bit mapper optimization for irregular LDPC codes are not
necessarily appropriate in our case due to the higher number of VN classes, i.e., they
can be too complex (for example the iterative grid search in [13]) or do not explore the
search space e�ciently (simple hill climbing approaches as in [14]).

First, as an alternative to directly optimizing the decoding threshold, we iteratively
optimize the convergence behavior in terms of the number of iterations until successful
decoding as follows. Initialize fl to the decoding threshold for the baseline bit mapper,
i.e., fl = flú(Auni). Find Aú such that it minimizes the number of decoding iterations
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until convergence for the given fl, i.e.,

Aú = argmin
AœAm◊n

Õ
ls(A, fl). (C.7)

We we employ di�erential evolution [27] to solve the optimization problem in (C.7).3 For
the found optimized Aú, calculate the new decoding threshold flú(Aú). If the threshold
did not improve, stop. Otherwise, set fl = flú(Aú) and repeat the optimization. A similar
iterative approach was proposed in [28, Sec. IV] to find optimized degree distributions
for irregular LDPC codes. The above approach was used by the authors to find good bit
mappers for SC-LDPC codes in [20] for parallel BECs. The computational complexity
can be significantly reduced compared to the threshold minimization (C.6). However,
it is not guaranteed to be equivalent to a true threshold optimization, i.e., in general
Aopt ”= Aú.

The optimization complexity is further reduced by constraining the maximum number
of iterations lmax. Practical systems commonly operate with a relatively small number
of BP iterations. For example, in Sec. 5, we assume 50 BP iterations, and hence the
decoding thresholds are optimized for the same number of iterations. In the simulative
verification, we have observed that the performance of the finite-length codes assuming 50
BP iterations is generally better using a bit mapper that is also optimized for lmax = 50
compared to, say, lmax = 1000, although the di�erences were small.

Additionally, for SC-LDPC codes, we take advantage of the structure of the optimized
bit mappers for parallel BECs [20], which show a certain form of periodicity. The opti-
mization complexity can then be reduced by assuming that the optimal solution lies in a
lower-dimensional subspace of P, defined by assignment matrices that take on a periodic
form as A = (AÕ, AÕÕ, AÕÕ, · · · , AÕÕ, AÕÕÕ), with m ◊ V matrices AÕ, AÕÕ, and AÕÕÕ, where
V is the periodicity factor. If V is chosen small enough, the dimensionality of the search
space (i.e., (m ≠ 1)(3V ≠ 1)) can be substantially reduced, which generally improves the
convergence speed of the di�erential evolution algorithm.

5 Results and Discussion
In this section, we present and discuss numerical results, and illustrate the performance
gains that can be achieved by employing optimized bit mappers. For the baseline systems,
we use a consecutive mapping of coded bits to modulation bits. Alternatively, one may
use a uniformly random mapping, which has the same expected performance.

In order to show the flexibility of the technique, we consider four di�erent scenarios,
combining both modulation formats with one code based on the ARJ4A protographs and
one SC-LDPC code, where the lifting factor is M = 3000 in all cases. For simplicity, the

3The fact that the search space is a convex polytope makes it relatively straightforward to take uniformly
distributed starting points in order to initialize the starting population in the di�erential evolution
algorithm.
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codes are randomly generated without further consideration of the graph structure. The
protograph lifting procedure can in principle be combined with standard techniques to
avoid short graph cycles that may potentially lead to high error floors4 [25, Ch. 6.3]. A
rate R = 2/3 code based on the ARJ4A protograph for ¸ = 1 is used, which is denoted
by CARJ4A. For the spatially coupled case with T = 30, a code based on the protograph
described in Sec. 3.2 is used, which is denoted by CSC. For the given value of T , the
design rate is R(30) = 0.656. For the ARJ4A code, standard BP decoding is assumed
with lmax = 50, while for the SC-LDPC codes, we employ a WD with W = 5 and
lmax = 10, which again amounts to a total of 50 iterations per decoded bit. We also
tried other combinations of W and lmax with a similar total number of iterations and
this combination gave the best performance. For the bit mapper optimization and in
particular the P-EXIT analysis, we use the same values for lmax and W , and additionally
ptar = 10≠5. The finite-length bit mappers are obtained via the rounded matrix MAú

from which the index assignment of coded bits to modulation bits is determined.

5.1 Linear Transmission
We start by providing a verification of the proposed optimization technique assuming an
AWGN channel. This case is obtained when nonlinear e�ects are ignored, i.e., “ = 0. In
this case, the channel PDF (C.2) is valid without approximations.

In Fig. 5(a), the predicted bit error rate (BER) of the ARJ4A code via the P-EXIT
analysis is shown together with Monte Carlo simulations by the dashed and solid lines,
respectively. Performance curves for the baseline bit mappers are shown in red and for
the optimized ones in blue. As a reference, we also plot the BER-constrained [25, p. 17]
generalized mutual information (GMI) for the corresponding spectral e�ciency in each
figure (the GMI is also referred to as the BICM capacity [29]). For both scenarios,
it can be observed that the optimized bit mappers lead to a significant performance
improvement. The gains that can be achieved at a BER of 10≠5 are approximately
0.19 and 0.25 dB for PM-64-QAM and PM-256-QAM, respectively. The predicted gains
from the P-EXIT analysis for the same BER is slightly less, i.e., 0.12 and 0.19 dB,
respectively. The deviation of the asymptotic analysis from the actual simulation results
is to be expected due to the Gaussian approximation of the LLR densities and the finite
lifting factor and, hence, finite block lengths of the codes. However, it is important to
observe that, even though the optimization was carried out assuming a cycle-free graph
structure, the predicted performance gains for the finite-length codes is well preserved.

Similarly, the performance of the SC-LDPC code is shown in Fig. 5(b). The periodicity
factor for the bit mapper optimization was set to V = 3. The observed gains at a BER of
10≠5 are approximately 0.20 dB for PM-64-QAM and 0.25 dB for PM-256-QAM. We also
show the predicted P-EXIT performance obtained for bit mappers that are optimized

4Alternatively, an additional outer algebraic code may be assumed, which removes remaining errors to
achieve a required target BER of 10≠15.
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Figure 5: Comparison of the optimized bit mappers (blue) with the baseline bit mappers (red)
for the linear transmission scenario. Dashed lines correspond to P-EXIT analysis and
solid lines to simulation results. In (b), solid green lines correspond to the P-EXIT
analysis for V = 6.

assuming a larger periodicity factor of V = 6 by the solid green curves. It can be seen
that for both modulation formats, the additional gains are incremental, i.e., for PM-64-
QAM the predicted performance curves virtually overlap, while for PM-256-QAM, the
di�erence is roughly 0.01 dB. This suggests that a full optimization of A will be only
marginally better than with V = 3.

We would like to stress that a direct comparison between the two codes is di�cult,
because of the slightly di�erent code rates (and hence spectral e�ciencies) and di�erent
decoding complexities and delays. Fair comparisons between SC-LDPC codes and LDPC
block codes is an active area of research and beyond the scope of this paper.

5.2 Nonlinear Transmission
In this section, we consider a transmission scenario including nonlinear e�ects, i.e., “ ”= 0,
where the assumed channel PDF (C.2) is only approximately valid. In particular, we
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parameter meaning value
R

s

symbol rate 40 Gbaud
L

sp

span length 70 km
– attenuation coe�cient (0.25 dB/km) 0.0576 km≠1

—

2

chromatic dispersion coe�cient -21.668 ps2/km
“ nonlinear Kerr parameter 1.4 W≠1 km≠1

‹

s

carrier frequency (1550 nm) 1.934 ◊ 1014 Hz
n

sp

spontaneous emission factor 1.622

Table 1: System parameters
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Figure 6: Comparison of the optimized bit mappers (blue) with the baseline bit mappers (red)
for the nonlinear transmission scenario.

study the potential increase in transmission reach that can be obtained by employing the
optimized bit mappers.

We consider a single channel transmission scenario to keep the simulations within
an acceptable time. In the simulation model, we assume perfect knowledge about the
polarization state, and perfect timing and carrier synchronization. All chosen system
parameters are summarized in Table 1. Additionally, we use a root-raised cosine pulse
p(t) with a roll-o� factor of 0.25. In order to solve (C.1), we employ the symmetric
SSFM with two samples per symbol and a fixed step size of � = (10≠4L2

DLNL)1/3, where
LD = 1/(|—2|R2

s

) and LNL = 1/(“P ) is the dispersive and nonlinear length, respectively.
The input power that maximizes fl according to the GN model varies between ≠2.2 dBm
for Nsp = 10 and ≠2.6 dBm for Nsp = 40. For simplicity, the input power per polarization
is fixed to P = ≠2.5 dBm for all values of Nsp.

In Fig. 6, the simulated BER of the PM systems using CARJ4A and CSC is shown as
a function of the number of fiber spans Nsp by the dashed and solid lines, respectively.
Again, curves corresponding to the baseline bit mappers are shown in red, while curves
corresponding to the optimized bit mappers are shown in blue. Notice that the SNR
decrease (in dB) is not linear with increasing number of spans, hence the di�erent slopes

C16



6 Conclusion

compared to the curves shown in Fig. 5. For PM-256-QAM, the transmission reach can
be increased by roughly one additional span for both codes, at the expense of a slightly
increased BER. For example, for CSC, the transmission reach can be increased from 12
to 13 spans, while the BER slightly increases from 10≠5 to 3 · 10≠5. For PM-64-QAM,
the increase is roughly 1 span for CARJ4A and roughly 2 spans for CSC. In fact, these
gains can be approximately predicted also from the GN model. For example, for the
chosen input power and system parameters, the GN model predicts an SNR decrease of
roughly 0.3 dB from Nsp = 12 to Nsp = 13 and 0.15 dB from Nsp = 34 to Nsp = 35, i.e.,
one would expect the performance improvements in the linear transmission scenario to
translate into roughly one additional span for PM-256-QAM and one to two additional
spans for PM-64-QAM. This estimate corresponds to an increase of the transmision reach
by 3–8%, which is well in line with the simulation results presented in Fig. 6.

6 Conclusion
In this paper, we studied the bit mapper optimization for a PM fiber-optical system.
Focusing on protograph-based codes, an optimization approach was proposed based on
a fractional allocation of protograph bits to modulation bits via a modified P-EXIT
analysis. Extensive numerical simulations were used to verify the analysis for a disper-
sion uncompensated link assuming both linear and nonlinear transmission regimes. The
results show performance improvements of up to 0.25 dB, translating into a possible
extension of the transmission reach by up to 8%.
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