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e Higher-order signal constellations/modulation formats for optical
communication to increase spectral efficiency

e Soft forward error correction (FEC) to increase reliability

Challenges
e Fiber nonlinearity. Which channel model to design modulation/coding?

o Receiver complexity (limiting processing speed at high baud rates)

Outline

1. Fiber-optical channel modeling

2. Constellation design in the presence of severe nonlinear phase noise
3. Low-complexity detection for polarization-multiplexed (PM) signals
4

. Bit mapper optimization for protograph codes
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e Channel model £ mathematical description of propagation medium and
transmitter/receiver elements (e.g. filters)

o Deterministic model for single mode fiber: nonlinear Schrédinger equation

e = Solution via space discretization A = L/ M

group velocity dispersion repeat M times

a’ﬁ2777L / 3

dispersion — all-pass filter
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e Channel model £ mathematical description of propagation medium and
transmitter/receiver elements (e.g. filters)

o Deterministic model for single mode fiber: nonlinear Schrédinger equation
e = Solution via space discretization A = L/M

attenuation coefficient repeat M times

aaﬁQv’YzL /’7777777777777‘; 7777777777777777 3

attenuation — decaying signal power
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ni

72 nK
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eIVAl eIVAl eIVAl

e Assume 82 = 0 (zero-dispersion fiber)
e Linear (pulse) modulation z(t) = > 2;p(¢t — kT) and sampling receiver
gives discrete-time channel (per-sample channel)

o Extensive work on this model, e.g., [Mecozzi, 1994],
[Turitsyn et al., 2003], [Ho, 2005], [Yousefi and Kschischang, 2011]
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e Exact statistical characterization through four-dimensional PDF
[Beygi et al., 2011]

e Two coupled systems due to nonlinear Kerr effect
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o Dispersive fibers, 52 # 0

e Dispersion is compensated for electronically at the receiver (PM-RX)
through an equalizer (electronic dispersion compensation)

e No exact characterization of the statistical relationship between
transmitted symbols @, = (Za,k, 2b,x) and received samples y, = (Ya,k, Yb,k)

e Under some assumptions, several works give theoretical justification for a
Gaussian noise (GN) model, e.g., [Beygi et al., 2012], [Carena et al., 2012]

14/19



Bit Mapper Optimization

08000 CHALMERS
[llustration of the Statistical Relationship

15/19



Bit Mapper Optimization

08000 CHALMERS
[llustration of the Statistical Relationship

PM-16-QAM

15/19



Bit Mapper Optimization

08000 CHALMERS
[llustration of the Statistical Relationship

PM-16-QAM

15/19



Bit Mapper Optimization Conclusions

08000 ° CHALMERS

hannel Modeling

[llustration of the Statistical Relationship

L [km]
8960 1
PM-16-QAM
2240
560 1
EZ W 3 L L S
£ W A LN LA S
0| 4 5 w5 R te .,
EE 2 F L “ v e,
—12 6 -0




Bit Mapper Optimization

90800 CHALMERS
Bit Mapper Optimization for Soft-Decision FEC

repeat Nsp times

16/19



Bit Mapper Optimization

90800 CHALMERS
Bit Mapper Optimization for Soft-Decision FEC

repeat Nsp times

)

bm,k—’

16/19



Channel Modeling

[e]e] le]e}

Bit Mapper Optimization for Soft-Decision FEC

repeat Nsp times

Bit Mapper Optimization

y(t) m Yy

\
'
i
'
|
|
'
i
T
'
|

’

bl,k—>
: o
bm,k—’

0010 0110 | 1110 1010
[ ] [ ] [ ] [ ]

0011 0111 | 1111 1011
L] [ ] [ ] [ ]

0001 0101 | 1101 1001
L] [ ] [ ] [ ]

0000 0100 | 1100 1000
L] ] [ ] [ ]

(in both polarizations)

LEJ

CHALMERS

16/19



Channel Modeling

[e]e] le]e}

Bit Mapper Optimization

Conclusions

CHALMERS

)

bm,k—’

0010 0110 | 1110 1010
[ ] [ ] [ ] [ ]
0011 0111 | 1111 1011
L] [ ] [ ] [ ]
0001 0101 | 1101 1001
L] [ ] [ ] [ ]
0000 0100 | 1100 1000
L] ] [ ] [ ]

(in both polarizations)

repeat Nsp times

\
'
i
'
|
|
'
i
T
'
|

’

y(t) @ Yy E

Bit Mapper Optimization for Soft-Decision FEC

l———— ll,k

> lm,k

16/19



Channel Modeling

[e]e] le]e}

Bit Mapper Optimization

CHALMERS

Bit Mapper Optimization for Soft-Decision FEC

Gaussian noise (GN) model

N3 ny i |
by, ) ——> : /L /L /L :
. T : 3
: i - X ® D
bm,k—’
0010 0110 | 1110 1010
[ ] [ ] [ ] [ ]
0011 o111 | 1111 1011
[ ] [ ] [ ] [ ]
0001 0101 | 1101 1001
[ ] [ ] [ ] [ ]
0000 0100 | 1100 1000
[ ] [ ] [ ] [ ]

(in both polarizations)

s ll,k
Yk | -1 :

—— .k

)

16/19




Channel Modeling

Bit Mapper Optimization
00800

CHALMERS

Bit Mapper Optimization for Soft-Decision FEC

Gaussian noise (GN) model

l———— ll,k

> lm,k

ng ng
b,k —— /L /L |
. Ty i
: P & @ D
by, ——>
6 fr; 418;,,(10)
0010 0110 | 1110 1010
[ ] [ ] [ ] [ ]
0011 0111 | 1111 1011 0.12 =2
L] [ ] [ ] [ ]
0001 0101 | 1101 1001 0.08
L] [ ] [ ] [ ]
0000 0100 | 1100 1000 0.04
L] ] [ ] [ ]
) o 0
(in both polarizations) _5 0 5

25

16/19



Channel Modeling Cons >n Desig >M-PS Bit Mapper Optimization Conclusions

00800 ° CHALMERS

Bit Mapper Optimization for Soft-Decision FEC

paraIIeI Gaussian LLR channels

b1,k N(+0}/2,0%) ik
b,k N(Ea7/2,07) b,k
fr; 418;,,(10)
0010 0110 | 1110 1010
[ ] [ ] [ ] [ ]
0011 0111 | 1111 1011 0.12 =2
L] [ ] [ ] [ ]
0001 0101 | 1101 1001 0.08
L] [ ] [ ] [ ]
i=1
0000 0100 | 1100 1000 0.04
L] ] [ ] [ ]
(in both polarizations) 075 0 5 10 15 20 25

16/19



Channel Modeling C desig Bit Mapper Optimization Conclusions

00800 ° CHALMERS

Bit Mapper Optimization for Soft-Decision FEC

paraIIeI Gaussian LLR channels

)
b1,k N(+0}/2,0%) ik
b,k N(£op/2,0%) b,k

0010 0110 | 1110 1010
. ° ° °
0011 0111 | 1111 1011 0121 i=2
. ° ° ° /
/- W\
0001 0101 | 1101 1001 0.08 LN
. . ° . N L
\ Q=
0000 0100 | 1100 1000 0.04
. . ° . NN
N N
(in both polarizations) 075 0 5 10 15 20 25
l

16/19



Bit Mapper Optimization

90800 CHALMERS
Bit Mapper Optimization for Soft-Decision FEC

parallel Gaussian LLR channels

——>{N(£0?/2,0%) —

1 (iam/Q ‘77271) 1

e Approximate setup: parallel Gaussian LLR channels with different qualities
(constellation size determines the number of channels)

16/19



—>{ Encoder

Bit Mapper Optimization

[e]e] le]e}

CHALMERS

Bit Mapper Optimization for Soft-Decision FEC

parallel Gaussian LLR channels

——>| N (+02 /2,52)

m m

———>{N(£0?/2,0)

—

—>{ Decoder

e Approximate setup: parallel Gaussian LLR channels with different qualities
(constellation size determines the number of channels)

e Fix one binary FEC encoder/decoder pair

16/19



Bit Mapper Optimization

90800 CHALMERS
Bit Mapper Optimization for Soft-Decision FEC

parallel Gaussian LLR channels

N(ia‘l/Q, al)

Bit . . . Bit
Mapper : : : Demap.

N(+02,/2,02)

e Approximate setup: parallel Gaussian LLR channels with different qualities
(constellation size determines the number of channels)

e Fix one binary FEC encoder/decoder pair

e Bit mapper determines the allocation of coded bits to the channels

16/19



Bit Mapper Optimization
[e]e] le]e}

CHALMERS
Bit Mapper Optimization for Soft-Decision FEC

parallel Gaussian LLR channels

N(£03/2,0%)
Bit . . . Bit
_) Mapper : : : Demap.
N(£02/2,02)

Approximate setup: parallel Gaussian LLR channels with different qualities
(constellation size determines the number of channels)

Fix one binary FEC encoder/decoder pair

Bit mapper determines the allocation of coded bits to the channels

Optimize the bit mapper for a given code and signal constellation

16/19



Bit Mapper Optimization

90800 CHALMERS
Bit Mapper Optimization for Soft-Decision FEC

parallel Gaussian LLR channels

N(ia‘l/Q, al)

Bit . . . Bit
Mapper : : : Demap.

N(+02,/2,02)

Approximate setup: parallel Gaussian LLR channels with different qualities
(constellation size determines the number of channels)

Fix one binary FEC encoder/decoder pair
Bit mapper determines the allocation of coded bits to the channels
Optimize the bit mapper for a given code and signal constellation

Baseline bit mapper: sequential /consecutive allocation (or random
allocation)

16/19



Bit Mapper Optimization

90800 CHALMERS
Bit Mapper Optimization for Soft-Decision FEC

parallel Gaussian LLR channels

N(ia‘l/Q, al)

Bit . . . Bit
Mapper : : : Demap.

N(+02,/2,02)

Approximate setup: parallel Gaussian LLR channels with different qualities
(constellation size determines the number of channels)

Fix one binary FEC encoder/decoder pair
Bit mapper determines the allocation of coded bits to the channels
Optimize the bit mapper for a given code and signal constellation

Baseline bit mapper: sequential /consecutive allocation (or random
allocation)
codeword = (C1, C2,C3,C4,C5,Cq,y.. )
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e Gains depend on the code and modulation format

e Up to ~ 8% reach extension without significantly increasing system

complexity

o Full-field simulations justify the GN model approximation and parallel

Gaussian LLR channel approximatio
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Conclusions

1. Discrete-time channel models are dependent on the fiber parameters and
receiver algorithms

2. Significant gains can be obtained by appropriately designing constellations
and detection schemes for the zero-dispersion channel model

3. Bit mapper optimization is an effective technique to obtain additional
system margins for a fixed code and constellation

Thank you!
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