Agenda

- Introduction of discussion leader Marco Secondini
- Errata
- Presentation by Christian Häger (30 min)
- Discussion (\approx 60 min)
- Questions and comments from the audience
- Final decision by examiner

On Signal Constellations and Coding for Long-Haul Fiber-Optical Systems

Christian Häger

 $\label{eq:charge} \mbox{ Department of Signals and Systems, Chalmers University of Technology, Gothenburg, Sweden, $$christian.haeger@chalmers.se$$

FIBER-OPTIC COMMUNICATIONS
RESEARCH CENTER

Licentiate Seminar, May 9, 2014

 Higher-order signal constellations/modulation formats for optical communication to increase spectral efficiency

- Higher-order signal constellations/modulation formats for optical communication to increase spectral efficiency
- Soft forward error correction (FEC) to increase reliability

- Higher-order signal constellations/modulation formats for optical communication to increase spectral efficiency
- Soft forward error correction (FEC) to increase reliability

Challenges

- Higher-order signal constellations/modulation formats for optical communication to increase spectral efficiency
- Soft forward error correction (FEC) to increase reliability

Challenges

• Fiber nonlinearity. Which channel model to design modulation/coding?

- Higher-order signal constellations/modulation formats for optical communication to increase spectral efficiency
- Soft forward error correction (FEC) to increase reliability

Challenges

- Fiber nonlinearity. Which channel model to design modulation/coding?
- Receiver complexity (limiting processing speed at high baud rates)

- Higher-order signal constellations/modulation formats for optical communication to increase spectral efficiency
- Soft forward error correction (FEC) to increase reliability

Challenges

- Fiber nonlinearity. Which channel model to design modulation/coding?
- Receiver complexity (limiting processing speed at high baud rates)

- Higher-order signal constellations/modulation formats for optical communication to increase spectral efficiency
- Soft forward error correction (FEC) to increase reliability

Challenges

- Fiber nonlinearity. Which channel model to design modulation/coding?
- Receiver complexity (limiting processing speed at high baud rates)

Outline

1. Fiber-optical channel modeling

- Higher-order signal constellations/modulation formats for optical communication to increase spectral efficiency
- Soft forward error correction (FEC) to increase reliability

Challenges

- Fiber nonlinearity. Which channel model to design modulation/coding?
- Receiver complexity (limiting processing speed at high baud rates)

- 1. Fiber-optical channel modeling
- 2. Constellation design in the presence of severe nonlinear phase noise

- Higher-order signal constellations/modulation formats for optical communication to increase spectral efficiency
- Soft forward error correction (FEC) to increase reliability

Challenges

- Fiber nonlinearity. Which channel model to design modulation/coding?
- Receiver complexity (limiting processing speed at high baud rates)

- 1. Fiber-optical channel modeling
- 2. Constellation design in the presence of severe nonlinear phase noise
- 3. Low-complexity detection for polarization-multiplexed (PM) signals

- Higher-order signal constellations/modulation formats for optical communication to increase spectral efficiency
- Soft forward error correction (FEC) to increase reliability

Challenges

- Fiber nonlinearity. Which channel model to design modulation/coding?
- Receiver complexity (limiting processing speed at high baud rates)

- 1. Fiber-optical channel modeling
- 2. Constellation design in the presence of severe nonlinear phase noise
- 3. Low-complexity detection for polarization-multiplexed (PM) signals
- 4. Bit mapper optimization for protograph codes

 Channel model ≜ mathematical description of propagation medium and transmitter/receiver elements (e.g. filters)

- Channel model ≜ mathematical description of propagation medium and transmitter/receiver elements (e.g. filters)
- Deterministic model for single mode fiber: nonlinear Schrödinger equation

- Channel model \triangleq mathematical description of propagation medium and transmitter/receiver elements (e.g. filters)
- Deterministic model for single mode fiber: nonlinear Schrödinger equation
- \approx Solution via space discretization $\Delta = L/M$

- Channel model \triangleq mathematical description of propagation medium and transmitter/receiver elements (e.g. filters)
- Deterministic model for single mode fiber: nonlinear Schrödinger equation
- ullet pprox Solution via space discretization $\Delta=L/M$

$$x(t) \xrightarrow{\alpha, \beta_2, \gamma, L} y(t)$$

- Channel model \triangleq mathematical description of propagation medium and transmitter/receiver elements (e.g. filters)
- Deterministic model for single mode fiber: nonlinear Schrödinger equation
- ullet pprox Solution via space discretization $\Delta=L/M$

- Channel model ≜ mathematical description of propagation medium and transmitter/receiver elements (e.g. filters)
- Deterministic model for single mode fiber: nonlinear Schrödinger equation
- \approx Solution via space discretization $\Delta = L/M$

Channel Modeling

nonlinear Kerr effect → phase rotation

- Channel model \triangleq mathematical description of propagation medium and transmitter/receiver elements (e.g. filters)
- Deterministic model for single mode fiber: nonlinear Schrödinger equation
- pprox Solution via space discretization $\Delta = L/M$

Channel Modeling

Fiber-Optical Channel Modeling

- Channel model

 mathematical description of propagation medium and transmitter/receiver elements (e.g. filters)
- Deterministic model for single mode fiber: nonlinear Schrödinger equation
- \approx Solution via space discretization $\Delta = L/M$

attenuation → decaying signal power

Optical Amplification and Noise

Optical Amplification and Noise

Optical Amplification and Noise

Optical Amplification and Noise

Optical Amplification and Noise

Optical Amplification and Noise

Optical Amplification and Noise

Optical Amplification and Noise

Optical Amplification and Noise

Optical Amplification and Noise

• Assume $\beta_2 = 0$ (zero-dispersion fiber)

- Assume $\beta_2 = 0$ (zero-dispersion fiber)
- Linear (pulse) modulation $x(t) = \sum x_k p(t kT)$ and sampling receiver gives discrete-time channel (per-sample channel)

- Assume $\beta_2 = 0$ (zero-dispersion fiber)
- Linear (pulse) modulation $x(t) = \sum x_k p(t kT)$ and sampling receiver gives discrete-time channel (per-sample channel)

- Assume $\beta_2 = 0$ (zero-dispersion fiber)
- Linear (pulse) modulation $x(t) = \sum x_k p(t kT)$ and sampling receiver gives discrete-time channel (per-sample channel)

- Assume $\beta_2 = 0$ (zero-dispersion fiber)
- Linear (pulse) modulation $x(t) = \sum x_k p(t kT)$ and sampling receiver gives discrete-time channel (per-sample channel)

- Assume $\beta_2 = 0$ (zero-dispersion fiber)
- Linear (pulse) modulation $x(t) = \sum x_k p(t kT)$ and sampling receiver gives discrete-time channel (per-sample channel)

- Assume $\beta_2 = 0$ (zero-dispersion fiber)
- Linear (pulse) modulation $x(t) = \sum x_k p(t kT)$ and sampling receiver gives discrete-time channel (per-sample channel)
- Extensive work on this model, e.g., [Mecozzi, 1994],
 [Turitsyn et al., 2003], [Ho, 2005], [Yousefi and Kschischang, 2011]

16-QAM

quadrature

in-phase

$\label{eq:amplitude_phase-Shift Keying (APSK), Example} Amplitude \ Phase-Shift \ Keying \ (APSK), \ Example$

 $(\ , \ , \)$ -APSK

in-phase

in-phase

in-phase

in-phase

in-phase

in-phase

Amplitude Phase-Shift Keying (APSK), Example (4,4,8)-APSK

(4, 4, 8)-APSK

in-phase

(4, 4, 8)-APSK

in-phase

(4, 4, 8)-APSK

in-phase

Amplitude Phase-Shift Keying (APSK), Example (4,4,8)-APSK

 $(4,4,8)\text{-}\mathsf{APSK}$

in-phase

Amplitude Phase-Shift Keying (APSK), Example (4,4,8)-APSK

quadrature

in-phase

quadrature another example

in-phase

(4, 4, 4, 4)-APSK

quadrature

in-phase

(4, 4, 4, 4)-APSK

in-phase

in-phase

in-phase

ML detection possible, but not practical.

Nonlinear Phase Postcompensation

Nonlinear Phase Postcompensation

Nonlinear Phase Postcompensation

• Building block for suboptimal (but practical) two-stage detector

Nonlinear Phase Postcompensation

- Building block for suboptimal (but practical) two-stage detector
- ullet Characterization of the PDF of $ilde{Y}$

Nonlinear Phase Postcompensation

- Building block for suboptimal (but practical) two-stage detector
- Characterization of the PDF of \tilde{Y}
- Necessary to compute, e.g., bit error probability

in-phase

• Extension of the previous channel model to polarization multiplexed signals

- Extension of the previous channel model to polarization multiplexed signals
- Exact statistical characterization through four-dimensional PDF [Beygi et al., 2011]

- Extension of the previous channel model to polarization multiplexed signals
- Exact statistical characterization through four-dimensional PDF [Beygi et al., 2011]
- Two coupled systems due to nonlinear Kerr effect

- Extension of the previous channel model to polarization multiplexed signals
- Exact statistical characterization through four-dimensional PDF [Beygi et al., 2011]
- Two coupled systems due to nonlinear Kerr effect

PM-16-QAM

Scatterplot for pol. a

Scatterplot for pol. a

separate compensation in each polarization

Scatterplot for pol. a

separate compensation in each polarization

after compensation

Scatterplot for pol. a

separate compensation in each polarization

after compensation

Scatterplot for pol. a

Scatterplot for pol. a

separate compensation in each polarization

after compensation

Scatterplot for pol. a

compensation based on both received amplitudes

Scatterplot for pol. a

separate compensation in each polarization

compensation based on both received amplitudes

after compensation

less phase noise → better SER

• Dispersive fibers, $\beta_2 \neq 0$

- Dispersive fibers, $\beta_2 \neq 0$
- Dispersion is compensated for electronically at the receiver (PM-RX) through an equalizer (electronic dispersion compensation)

- Dispersive fibers, $\beta_2 \neq 0$
- Dispersion is compensated for electronically at the receiver (PM-RX) through an equalizer (electronic dispersion compensation)
- No exact characterization of the statistical relationship between transmitted symbols $x_k = (x_{\mathsf{a},k},x_{\mathsf{b},k})$ and received samples $y_k = (y_{\mathsf{a},k},y_{\mathsf{b},k})$

Channel Model for PM Transmission including Dispersion

- Dispersive fibers, $\beta_2 \neq 0$
- Dispersion is compensated for electronically at the receiver (PM-RX) through an equalizer (electronic dispersion compensation)
- No exact characterization of the statistical relationship between transmitted symbols $x_k = (x_{a,k}, x_{b,k})$ and received samples $y_k = (y_{a,k}, y_{b,k})$
- Under some assumptions, several works give theoretical justification for a Gaussian noise (GN) model, e.g., [Beygi et al., 2012], [Carena et al., 2012]

PM-16-QAM

(in both polarizations)

(in both polarizations)

(in both polarizations)

• Approximate setup: parallel Gaussian LLR channels with different qualities (constellation size determines the number of channels)

- Approximate setup: parallel Gaussian LLR channels with different qualities (constellation size determines the number of channels)
- Fix one binary FEC encoder/decoder pair

- Approximate setup: parallel Gaussian LLR channels with different qualities (constellation size determines the number of channels)
- Fix one binary FEC encoder/decoder pair
- Bit mapper determines the allocation of coded bits to the channels

- Approximate setup: parallel Gaussian LLR channels with different qualities (constellation size determines the number of channels)
- Fix one binary FEC encoder/decoder pair
- Bit mapper determines the allocation of coded bits to the channels
- Optimize the bit mapper for a given code and signal constellation

- Approximate setup: parallel Gaussian LLR channels with different qualities (constellation size determines the number of channels)
- Fix one binary FEC encoder/decoder pair
- Bit mapper determines the allocation of coded bits to the channels
- Optimize the bit mapper for a given code and signal constellation
- Baseline bit mapper: sequential/consecutive allocation (or random allocation)

- Approximate setup: parallel Gaussian LLR channels with different qualities (constellation size determines the number of channels)
- Fix one binary FEC encoder/decoder pair
- Bit mapper determines the allocation of coded bits to the channels
- Optimize the bit mapper for a given code and signal constellation
- Baseline bit mapper: sequential/consecutive allocation (or random allocation)

codeword =
$$(c_1, c_2, c_3, c_4, c_5, c_6, ...)$$

- Main idea: obtain Tanner graph from a small protograph via copy-and-permute procedure
- Allows for high-speed hardware implementation

- Main idea: obtain Tanner graph from a small protograph via copy-and-permute procedure
- Allows for high-speed hardware implementation
- Optimized allocation of the coded bits from the protograph code to the parallel channels

- Main idea: obtain Tanner graph from a small protograph via copy-and-permute procedure
- Allows for high-speed hardware implementation
- Optimized allocation of the coded bits from the protograph code to the parallel channels

AR4 IA codes

- Main idea: obtain Tanner graph from a small protograph via copy-and-permute procedure
- Allows for high-speed hardware implementation
- Optimized allocation of the coded bits from the protograph code to the parallel channels

AR4JA codes

• Gains depend on the code and modulation format

- Gains depend on the code and modulation format
- Up to ≈ 8% reach extension without significantly increasing system complexity

- Gains depend on the code and modulation format
- Up to ≈ 8% reach extension without significantly increasing system complexity
- Full-field simulations justify the GN model approximation and parallel Gaussian LLR channel approximation

1. Discrete-time channel models are dependent on the fiber parameters and receiver algorithms

- 1. Discrete-time channel models are dependent on the fiber parameters and receiver algorithms
- 2. Significant gains can be obtained by appropriately designing constellations and detection schemes for the zero-dispersion channel model

- 1. Discrete-time channel models are dependent on the fiber parameters and receiver algorithms
- 2. Significant gains can be obtained by appropriately designing constellations and detection schemes for the zero-dispersion channel model
- 3. Bit mapper optimization is an effective technique to obtain additional system margins for a fixed code and constellation

- 1. Discrete-time channel models are dependent on the fiber parameters and receiver algorithms
- 2. Significant gains can be obtained by appropriately designing constellations and detection schemes for the zero-dispersion channel model
- 3. Bit mapper optimization is an effective technique to obtain additional system margins for a fixed code and constellation

Thank you!

References

Beygi, L., Agrell, E., Johannisson, P., Karlsson, M., and Wymeersch, H. (2012).

A discrete-time model for uncompensated single-channel fiber-optical links.

IEEE Trans. Commun., 60(11):3440-3450.

Beygi, L., Agrell, E., Karlsson, M., and Johannisson, P. (2011).

Signal statistics in fiber-optical channels with polarization multiplexing and self-phase modulation. J. Lightw. Technol., 29(16):2379–2386.

Carena, A., Curri, V., Bosco, G., Poggiolini, P., and Forghieri, F. (2012).

Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links.

J. Lightw. Technol., 30(10):1524-1539.

Ho, K.-P. (2005).

Phase-modulated Optical Communication Systems. Springer.

Mecozzi, A. (1994).

Limits to long-haul coherent transmission set by the Kerr nonlinearity and noise of the in-line amplifiers. J. Lightw. Technol., 12(11):1993–2000.

Turitsyn, K. S., Derevyanko, S. A., Yurkevich, I. V., and Turitsyn, S. K. (2003).

Information capacity of optical fiber channels with zero average dispersion. *Phys. Rev. Lett.*, 91(20):203901.

Yousefi, M. I. and Kschischang, F. R. (2011).

On the per-sample capacity of nondispersive optical fibers.

IEEE Trans. Inf. Theory, 57(11):7522-7541.