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Abstract

The two-way relay channel (TRC) is a simple communication network in which two users
wish to exchange independent messages with the help of a relay. This network has at-
tracted a lot of research interest in recent years. In particular the separated two-way
relay channel (sTRC), where no direct communication link exists between the users, has
become a widely used example to demonstrate the potential benefits of network coding
(NC) and physical-layer network coding (PNC) over conventional routing approaches.
Moreover, information-theoretic results about achievable rates can provide insight and
helpful benchmarks for the design of future communication networks.
Motivated by wireless applications, in this thesis some important relaying strategies for the
Gaussian case of the sTRC are reviewed and compared. First, the topic is introduced with
an example in order to illustrate important principles that arise in cooperative wireless
networks. Then three relaying strategies, namely amplify-and-forward (AF), decode-and-
forward (DF), and modulo-and-forward (MF), are described and compared for particular
channel conditions. It is also shown that by using nested lattice codes in combination with
superposition coding it is possible to characterize the capacity region of this network to
within a constant gap for arbitrary channel conditions. After that, the network is modified
by adding a second relay. We call the resulting setup the separated two-way two-relay
channel (sTTRC) and show that the cut-set region is achievable for a (binary symmetric)
finite field physical layer using nested linear codes. For the Gaussian case an achievable
rate region is derived assuming certain channel conditions. The employed coding strategy
is based on a lattice partition chain and the derived region is within 1/2 bit per dimension
of the capacity region for each user.
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CHAPTER 1

Introduction

The theme of this thesis is bidirectional communication of two wireless nodes, when so-
called relay nodes assist in the message exchange. For the case with only one relay the
setup is commonly referred to as the two-way relay channel (TRC) and this chapter
provides a brief overview over important principles that arise in such cooperative wireless
communication networks as opposed to conventional point-to-point communication.
The network setup itself may occur often in practical situations. As an example in Figure
1.1 two wireless users are depicted who wish to communicate (e.g. chat, file exchange,
etc.) via a common relay station. Usually wireless transceivers are half-duplex (HD)
constrained [1], which means that a device node can either transmit or receive but not
both at the same time. Then, if the direct link between the two users is sufficiently

user a user b

relay r

direct link

Figure 1.1.: A common practical example for bidirectional wireless communication via a relay r.
The users a and b want to communicate (exchange independent messages).
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a r b

a r b

a r b

a r b

1.

2.

3.

4.

(a) four-phase

a r b

a r b

a r b
broadcast

(b) three-phase

a r b

a r b
broadcast

interference

(c) two-phase

Figure 1.2.: Possible transmission protocols for the sTRC with HD constrained nodes.

strong, a very simple (and suboptimal) strategy would be that the users just take turns
transmitting their data while ignoring the relay. However, in this thesis the direct link
is assumed to be very weak and neglectable which may occur when the users are very
far apart. In that case another, quite different, situation arises. Now the relay becomes
the enabler of communication which means that no positive data rate can be established
without it and any information flow has to pass through the relay. This setup is called
the separated two-way relay channel (sTRC) [2] and substantial progress has been made
in recent years in order to find an optimal transmission strategy for this network and to
characterize the capacity region [2–7].
The usual paradigm in wireless networking is to avoid interference as much as possible,
establish reliable point-to-point links between nodes at the physical layer and route the
data packets through those links. With this approach a hypothetical exchange of two
bits, say x1 (direction a → b) and x2 (direction b → a), would then demand for four
transmission phases, which is depicted in Figure 1.2 (a). First user a transmits the bit x1

to the relay r and the relay forwards the bit to b. Then similarly user b transmits the bit
x2 to r and r forwards the bit to a. However, this approach must not be optimal from an
information-theoretic viewpoint. In fact, there has been a paradigm shift in networking,
and in particular wireless networking, with the introduction of network coding (NC) by
Ahlswede et al. [8]. The key insight is that messages which are intended for different
nodes (or “flow” in opposite directions as in the case of bidirectional communication)
should not be treated separately but can be mixed or combined at intermediate relay
nodes1. Applying NC to this example may actually save one transmission phase [10]. The

1A more descriptive way to put this is that information flow through a network should not be treated as
the flow of water through pipes [9].
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idea is to first let both users transmit their respective message bit to the relay. The relay
computes the XOR (x1 ⊕ x2) of those bits, i.e. the parity-check bit, and then transmits
this bit. Without violating the HD constraint, both users may receive the parity-check
bit because the wireless channel allows for broadcasting, such that more than one node
can overhear a particular transmission. Then, after successful reception, each user is able
to extract the message of the other user by employing side information (SI), because the
own message bit is known. User a computes (x1 ⊕ x2) ⊕ x1 = x2 while user b computes
(x1 ⊕ x2) ⊕ x2 = x1, thereby recovering the message of the respective other user. This
approach uses a three-phase transmission protocol and is depicted in Figure 1.2 (b).
In wireless communication, interference is regarded as harmful because an interfering sig-
nal acts as additive noise and therefore reduces the achievable data rates. An important
characteristic of the four-phase and three-phase transmission protocol described above is
that interference between transmitting signals is avoided entirely. For the sTRC, however,
interference can only happen at the relay (because the two users are assumed to be sepa-
rated) but the relay is not the intended destination for neither of the messages. Therefore
there is no necessity for the relay to actually decode the messages at all2. Surprisingly then,
interference can be harnessed in the form of physical-layer network coding (PNC) [11,12]
which may substantially increase the overall throughput for this network. An illustration
of a two-phase protocol that involves interference in the first phase is depicted in Figure
1.2 (c). Here both users transmit their respective signals in the same time slot and con-
sequently these signals interfere at the receiving antenna of the relay. The key idea is to
exploit the fact that wireless signals interfere in an additive way and to use this additive
nature of the wireless channel “for an equivalent network coding operation” [11]. This
is the main motivation to study lattices in the context of cooperative wireless networks
because they naturally fit this idea of PNC [5, 6, 12–15]. In order to illustrate the basic
principle, assume now that conventional binary phase-shift keying (BPSK) is employed
and both users map their message bits to signals according to 0 → −1 and 1 → +1.
BPSK modulation can be regarded as a mapping of bits to points in a (translated) lattice,
more precisely {0, 1} → 2Z− 1, where Z is the set of all integers or equivalently the one-
dimensional integer lattice. The users then transmit the modulated signals in the same
time slot. For an ideal, noiseless channel with perfect synchronization the relay receives
either ±2, when the bits of the users are identical, or 0, when the bits of the users are
different. The relay can then apply the mapping ±2 → 0 and 0 → 1 and one can check
that the received signal at the relay indeed corresponds to a “physical-layer equivalent” of

2Note that in both the routing and the network coding approach described above, the relay is fully aware
of both message bits.
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Chapter 1. Introduction

the XOR of the two message bits. Of course, when the relay receives 0, it is impossible to
extract the individual message of the users from the superimposed signal. However, this
is not necessary. The relay can proceed as in the NC case (i.e. broadcast the parity-check
bit) and rely on the fact that the two users have sufficient SI in order recover the original
messages.
In summary, the following principles may arise in cooperative wireless communication
networks such as the TRC and will be used or referred to extensively throughout the rest
of this thesis:

Network Coding. Decoded messages can be combined locally at intermediate relay nodes
[8]. In this thesis NC will simply mean computing the componentwise XOR of two
binary message vectors.

Broadcasting. In a wireless network it is possible that more than one node can overhear
a particular signal by a transmitting node.

Side Information. In a communication network nodes have knowledge of past received
or transmitted signals and/or messages.

Interference. When two or more wireless nodes transmit a signal in the same time slot,
these signals get linearly superimposed at a receiving node.

Physical-Layer Network Coding. The additive nature of simultaneously arriving wireless
signals can be used for an equivalent network coding operation [11].

The research on this topic is ongoing and new material is published frequently. Therefore,
the author would like to point out a very recent survey-style paper on this subject [16],
which provides an excellent overview over different techniques and ideas that have been
developed so far as well as many references.

1.1. Thesis Outline

In chapter 2 the notation is introduced and the so-called cut-set bound is applied to the
Gaussian case of the sTRC yielding an upper bound on the achievable rate pairs. After
that, two relaying strategies which to not rely on lattices, namely amplify-and-forward
(AF) and decode-and-forward (DF), are briefly reviewed and serve as a comparison refer-
ence for the strategies described in chapter 3. Chapter 3 starts with a general introduction
to lattices and the most important figure of merits regarding their usage in cooperative
communication networks. Two relaying approaches based on lattices are then described

4



1.1. Thesis Outline

in detail. First the modulo-and-forward (MF) strategy is considered which is proposed
in [15]. In [15] a restrictive channel model is used, in the sense that the two communi-
cation links from the relay to the users are assumed to have equal signal-to-noise ratio
(SNR). In this thesis the MF scheme is generalized by applying it to the Gaussian sTRC
with arbitrary channel conditions and the achievable rates are provided. Then, it is shown
that by using nested lattice codes in combination with rate splitting and superposition
coding it is possible to characterize the capacity region of this network to within a gap
of 1/2 bit per dimension for each user. Moreover, it is shown that the gap vanishes for
one user with increasing uplink SNR. In chapter 4 we compare the described approaches
under various channel conditions in terms of achievable sum rates. Finally, in chapter 5
a second relay is added to the network. It is assumed that that only two adjacent nodes
can communicate with each other and we call this network the (fully) separated two-way
two-relay channel (sTTRC). We derive the capacity region assuming a (binary symmetric)
finite field physical layer and an achievable rate region for the Gaussian case under certain
channel conditions.
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CHAPTER 2

Preliminaries for the Separated Two-Way Relay Channel

In this chapter the cut-set bound [9] is used to obtain an upper bound on the achievable
rate pairs for the Gaussian sTRC with full-duplex (FD) nodes and for the Gaussian TRC
with HD nodes under the assumption of a two-phase transmission protocol. After that,
two important relaying strategies which do not rely on lattices are briefly reviewed. While
the focus of this thesis is on lattice-based strategies, a wide variety of different relaying
strategies have been proposed for this network model (see e.g. [3, 17, 18]). The choice of
these two particular strategies, namely amplify-and-forward (AF) and decode-and-forward
(DF), is motivated by the fact that they constitute possible extremes regarding the knowl-
edge about the messages of the two users at the relay node. Roughly, in the AF scheme
the relay merely acts as a repeater, i.e. it rescales and forwards the signal it receives. In
particular the relay does not attempt to decode the messages and therefore is unaware of
them. In contrast to this, in the DF scheme the relay tries to fully decode both messages.
This may or may not be useful, but there is however no necessity for the relay to actually
decode both messages individually. Both strategies are not optimal in general for this
communication network. In fact, the particular shortcoming of the DF scheme, which will
be explained below, directly motivates the use of lattice codes in chapter 3. The upper
bound as well as the achievable rates for the two strategies described in this chapter will
then serve as a comparison reference for the lattice-based strategies in chapter 4.
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Chapter 2. Preliminaries for the Separated Two-Way Relay Channel

device source sink link

a r b

(Xa, Ya) (Xr, Yr) (Xb, Yb)

Wa Wb

ŴaŴb

har hrb

hbrhra

Figure 2.1.: The network model of the sTRC where no direct communication link is present
between the users.

2.1. Network Model and Notation

In Figure 2.1 the network model of the sTRC is depicted1. It is assumed that all device
nodes have FD capability and the case where the nodes are HD constrained is described
further below. The two users a and b want to exchange independent messages, denoted
by Wa (direction a → b) and Wb (direction b → a), at rates Ra and Rb (in bits per
channel use) respectively. The messages are chosen uniformly and independently from the
message sets Wa = {1, 2, · · · , b2nRac} and Wb = {1, 2, · · · , b2nRbc}, where n denotes the
number of channel uses. The relay r has no message to transmit and is not the intended
destination for neither of the users messages, i.e. no source or sink nodes are attached to
the relay device node in the network model. For simplicity it is assumed that nRa and
nRb are integers and therefore the messages can also be uniquely written as binary vectors
denoted by W a ∈ {0, 1}nRa and W b ∈ {0, 1}nRb . Each node is associated with an input
and an output variable denoted by (Xa, Ya), (Xr, Yr) and (Xb, Yb) respectively. For the
Gaussian case of the sTRC these variables take on values in R and the channel is modeled
by the following three equations:

Ya = hraXr + Za (2.1a)

Yr = harXa + hbrXb + Zr (2.1b)

Yb = hrbXr + Zb, (2.1c)

where Za, Zr and Zb are i.i.d. Gaussian random variables with zero mean and unit variance
and the channel gains har, hbr, hra, hrb are positive real numbers representing the signal
attenuation between nodes. It is assumed that all channel gains can be different (no
reciprocity) and are fixed for the whole message exchange (flat fading). Each node has full
cannnel state information (CSI) and is therefore aware of all channel gains. Note that the
equations (2.1) imply the absence of a direct communication link between the two users

1This graphical notation for cooperative communication networks is proposed in [1].
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2.1. Network Model and Notation

and in particular equation (2.1b) accounts for the interference that can happen at the
relay and (2.1a) and (2.1c) reflect the broadcast nature of this network. The channel is
assumed to be memoryless and for successive channel uses a vector notation will be used.
Vectors with length n are be denoted by Xa = (Xa,1, . . . , Xa,n), where Xa,i refers to the
transmitted signal of user a at time i and Xi

a = (Xa,1, Xa,2, . . . , Xa,i) denotes all channel
inputs for user a up to time i (and similarly for all other input and output variables). All
transmitted signals are subject to an average power constraint according to

1
n

n∑
i=1

E
[
X2
j,i

]
≤ P ∀j ∈ {a, r, b}, (2.2)

where E [ · ] denotes expectancy. For a particular node the transmitted signal at time i can
be a function of the message of that node and also of the past received channel outputs:

Xa,i = f(Wa,Y
i−1
a ) (2.3a)

Xr,i = f(Y i−1
r ) (2.3b)

Xb,i = f(Wb,Y
i−1
b ). (2.3c)

Recall that the relay has no message of its own and therefore Xr,i is a function of the
past received channel outputs only. The message estimates at the two users are computed
based on all received channel outputs as well as the own transmitted message, i.e. Ŵa =
g(Y b,Wb) and Ŵb = g(Y a,Wa). An error occurs if the transmitted message of one user
is not equal to the corresponding estimate of the other user and the error probability is
given by

pe = Pr({Ŵa 6= Wa} ∪ {Ŵb 6= Wb}). (2.4)

A rate pair (Ra, Rb) is said to be achievable if encoding and decoding functions exists such
that pe → 0 for n → ∞. The capacity region Rc is the closure of all rate pairs that are
achievable.

Half-duplex nodes

Practical wireless transceivers are commonly HD constrained [1] and cannot transmit and
receive at the same time. Accounting for this constraint is usually done by assuming a
particular transmission protocol (or equivalently a sequence of network states [19]) which
predefines the (non-adaptive) temporal sequence of transmission and reception phases for
each node. For the sTRC with HD device nodes a general two-phase protocol is depicted in
Figure 2.2 (a). Here the channel is used 2n times in total and the channel uses are divided
into an uplink and downlink phase of relative durations ∆1 and ∆2 respectively, where

9
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uplink

downlink

∆12n ∆22n
2n

(a) HD, general two-phase protocol

uplink

downlink

n n
2n

(b) HD, restricted two-phase protocol

uplink 1 uplink 2 uplink 3 uplink M

downlink 1 downlink 2 downlink M − 1 downlink M

n
Mn

(M + 1)n

. . .

(c) FD, transmission of M blocks of dimension n

Figure 2.2.: Relationship between the protocol strategies for HD and FD nodes. In this thesis the
restricted two-phase protocol (b) is always used to describe the relaying strategies
and generalization to FD nodes is done with the block transmission strategy (c).

0 ≤ ∆1 ≤ 1, 0 ≤ ∆2 ≤ 1, and ∆1 + ∆2 = 1. In the uplink, both users a and b transmit
signals and the relay receives. Consequently the relay remains silent and the users don’t
receive any information. In the downlink the relay transmits while both users receive. For
HD nodes the power constraint (2.2) is assumed to hold for each phase separately. In this
thesis a restricted two-phase protocol is considered where ∆1 = ∆2 = 1/2, i.e. the relative
durations of the uplink and downlink are equal2. The following lemma shows, that for this
particular transmission protocol the relationship between achievable rates for HD and FD
nodes is simple.

Lemma 1. If a particular rate pair (Ra/2, Rb/2) is shown to be achievable for the Gaussian
sTRC with HD nodes under the assumption of the restricted two-phase protocol, then the
rate pair (Ra, Rb) is achievable for the Gaussian sTRC with FD nodes.

Proof. The strategy showing the achievability for HD nodes is used M times as shown in
Figure 2.2 (c). Then MnRa bits are transmitted from user a to b in (M + 1)n channel
uses and thus the rate approaches Ra for large M (and similarly for user b). Achievability
follows from the fact that the error probability for each uplink/downlink pair can be made
arbitrarily small for n→∞.

Because of this lemma, the following convention will be used when describing the relaying
2For the general two-phase protocol it would be possible to find optimal ∆1 and ∆2 with respect to, say,
the overall throughput for the network based on a particular relaying strategy, see [20].
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2.2. Cut-set Bound

a r b

(1) (2)

Figure 2.3.: Illustration of the two possible cuts (1) and (2) for the sTRC.

strategies in the following sections. All relaying strategies are described with respect to HD
nodes assuming the restricted two-phase protocol (with other words one uplink/downlink
phase is described and depicted in block diagrams). The achievable rates are then stated
for FD nodes, i.e. multiplied by a factor of two, mainly in order to avoid the prelog factors
that would occur otherwise.

2.2. Cut-set Bound

The cut-set bound [9] provides an upper bound on the achievable rate tuples for general
multi-terminal networks. In this section this bound is used to obtain an upper bound on
the achievable rate pairs for the Gaussian sTRC with FD nodes. The network topology
illustrating the possible cuts is depicted in Figure 2.3. A cut divides all device nodes in
a network into two disjoint subsets. The flow of information from one subset to another
is limited by the mutual information between the inputs of one subset and the outputs of
the other subset, conditioned by the outputs of the other subset [9]. Applying the cut-set
bound to the Gaussian sTRC yields the following cut-set region3:

Rcut =

(Ra, Rb) :
0 < Ra < min

(
C
(
h2
arP

)
,C
(
h2
rbP

))
0 < Rb < min

(
C
(
h2
brP

)
,C
(
h2
raP

))  , (2.5)

where C (x) def.= log2(1+x)/2. The cut-set region upper bounds the capacity region, in the
sense that Rc ⊆ Rcut. The cut-set bound in [9] is derived for FD nodes and consequently
(2.5) also only applies to FD nodes. An upper bound for the (not necessarily separated)
Gaussian TRC with HD nodes under the assumption of the general two-phase protocol as
described in the previous section is derived in [22] and given by:

RHD
cut =

(Ra, Rb) :
0 < Ra < min

(
∆1 C

(
h2
arP

)
,∆2 C

(
h2
rbP

))
0 < Rb < min

(
∆1 C

(
h2
brP

)
,∆2 C

(
h2
raP

))  . (2.6)

3This result first appeared in [14] and a complete proof for both discrete memoryless channels and the
Gaussian case is given in [21].
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ENC a

ENC b

ut

Wa

Wb

Xa

Xb

har

hbr

Y r
Zr

γ

DEC a

DEC b

hra

hrb

Za

Zb

Y a

Y b

Ŵb

Ŵa

−γaXa

−γbXb

side information

side information

rescaling

Xr = γY r

Figure 2.4.: Block diagram for the amplify-and-forward (AF) strategy. See the text for an expla-
nation of the scaling factors γ, γa and γb.

Note that the assumption of separation (absence of a direct link) is not necessary here in
order to state the upper bound because the nature of the two-phase protocol in combination
with the HD assumption renders any existing direct link unexploitable. Also note that for
HD nodes the assumed transmission protocol is key in order to state an upper bound and
different protocols lead to different upper bounds (see [18]). It can be seen that for the
restricted two-phase protocol, i.e. for ∆1 = ∆2 = 1/2, the cut-set region for the Gaussian
sTRC with FD nodes differs from the cut-set region for the Gaussian TRC with HD nodes
only by factor of 2.

2.3. Amplify-and-forward

One of the simplest relaying strategies for the Gaussian case of the sTRC is called amplify-
and-forward (AF) and is described in [3], [4] and [23] for HD nodes. In the following the
derivation of the achievable rates for AF is briefly reviewed. See Figure 2.4 for a block
diagram of this scheme. In the uplink both users simultaneously transmit their respective
signals Xa and Xb which are assumed to be independent to have average power P . The
basic idea is that the relay broadcasts a rescaled version of the received signal Xr = γY r,
where the scaling factor γ is chosen such that the relay power constraint is met, i.e.

1
n

E
[
||Xr||2

]
= 1
n

E
[
||γY r||2

]
= γ2(h2

arP + h2
brP + 1) != P (2.7)

⇒ γ2 = P

h2
arP + h2

brP + 1
. (2.8)

Upon reception both users can subtract a scaled version of their own transmit signal from
the received signal prior to decoding, i.e. they employ “analog” SI [24]. For example user

12
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a receives

Y a = hraXr + Za = hraγY r + Za

= hraγ(harXa + hbrXb + Zr) + Za (2.9)

and then subtracts γaXa = hraγharXa in order to obtain

Ỹ a = Y a −γaXa︸ ︷︷ ︸
analog side
information

= γhbrhraXb + γhraZr + Za. (2.10)

Obviously the assumption of full CSI for all nodes is necessary in order to calculate the
scaling factors correctly. Equation (2.10) shows that user a “sees” an additive Gaussian
noise channel for which an equivalent signal-to-noise ratio SNRa can be computed given
by

SNRa = γ2h2
brh

2
raP

γ2h2
ra + 1 = h2

brh
2
raP

2

h2
raP + h2

arP + h2
brP + 1

. (2.11)

The same steps can be repeated for user b to obtain a similar expression for SNRb. Effec-
tively, this scheme converts the sTRC into a Gaussian two-way channel [4] (see also [9, p.
519]).

Therefore, the achievable rates for AF are given by all positive rate pairs satisfying

Ra < C (SNRb) = C
(

h2
arh

2
rbP

2

h2
rbP + h2

arP + h2
brP + 1

)

Rb < C (SNRb) = C
(

h2
brh

2
raP

2

h2
raP + h2

arP + h2
brP + 1

)
.

(2.12)

Note that this strategy can be applied to FD nodes by assuming that forwarding is done on
a per-symbol basis (rather than on a per-block basis), i.e. the relay immediately transmits
the rescaled version of each received symbol Yr,i. The relay then transmits nothing in the
first channel use and receives and transmits simultaneously in the following n − 1 uses
according to the previous description. In the last channel use only the relay transmits
because the users are finished with transmitting their own signals which have length n.
Therefore the whole message exchange takes n + 1 channel uses and the effective rate is
reduced by a factor of n/(n+ 1) which can be neglected for n→∞.

2.4. Decode-and-forward

A decode-and-forward (DF) strategy for the sTRC is proposed in [3] for the Gaussian case
and in [4] for the Gaussian case as well as for general discrete memoryless channel models.

13
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Wb

side information

side information
decode

Figure 2.5.: Block diagram for the decode-and-forward (DF) strategy. Here the relay tries to
completely decode both messages in the uplink phase and re-encodes them for the
downlink.

The key idea for this strategy is that the relay attempts to fully decode both messages in
the first phase and then re-encodes them for transmission in the second phase. A block
diagram for this strategy is depicted in Figure 2.5.
Interestingly the DF strategy decomposes the sTRC setup into two separate problems.
In the uplink the setup is identical to the classical Gaussian multi-access channel. The
capacity region for the uplink is therefore given by the set of rate pairs satisfying [9]

Ra < C
(
h2
arP

)
Rb < C

(
h2
brP

)
Ra +Rb < C

(
h2
arP + h2

brP
)
.

(2.13)

It is tempting to regard the second phase as the classical Gaussian broadcast channel, but
this would not account for the fact that each user knows its own message and therefore
has SI to exploit. It is not obvious however to see what the best use of this SI is. In [3]
“analog” SI is considered, in the sense that superposition coding is used at the relay.
The relay re-encodes the decoded messages by using the same codebooks as the users but
with adjustable power allocation. Then, each user can subtract its own codeword prior to
decoding, provided that the power allocation is known. Another approach is to use NC.
Here one can achieve all rate pairs satisfying

Ra, Rb < min
(
C
(
h2
raP

)
,C
(
h2
rbP

))
. (2.14)

This may be achieved by zero-padding the shorter message vector such that both message
vectors have equal length and computing W = W a⊕W b at the relay where ⊕ denotes the
componentwise XOR of two binary vectors. Then, a random Gaussian codebook is used for
transmitting the “common message” W and decoding at both users will be successful with
large probability if the restriction (2.14) is fulfilled, i.e. the cardinalities of the message sets
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2.4. Decode-and-forward

are adjusted to the worse SNR in the downlink. After successful decoding, each user can
XOR the decoded common message with its own and thereby extract the other message.
However, both approaches described above turn out to be suboptimal in general4. It has
been shown by several authors [4, 26–28] that in the downlink phase the following rates
are achievable5:

Ra < C
(
h2
rbP

)
Rb < C

(
h2
raP

)
.

(2.15)

Now one can combine the two results for the uplink and downlink phase and argue that
for a successful message exchange with vanishing error probability the rates have to be
chosen such that they lie in both achievability regions simultaneously, i.e. the intersection
of (2.13) and (2.15).

Then, in summary the following rates are achievable with DF:

Ra < min
(
C
(
h2
arP

)
,C
(
h2
rbP

))
Rb < min

(
C
(
h2
brP

)
,C
(
h2
raP

))
Ra +Rb < C

(
h2
arP + h2

brP
)
.

(2.16)

Comparing the achievable rates given by (2.16) to those implied by the upper bound in
(2.5), it can be seen that both are identical with the exception that the last inequality
in (2.16) puts an additional constraint on the sum rate of both users. In the context
of the sTRC this additional constraint leads to a so-called multiplexing loss [4]. The
explanation for this loss is that in the DF scheme the relay attempts to decode both
messages individually even though this is not necessarily required. The strategies that are
described in the next chapter are based on lattices and designed such that this multiplexing
loss is avoided. Roughly, the relay does not attempt to decode both messages, but rather
“protects” the sum of two lattice points (which can be seen as a function of the two
messages) instead.

4The NC approach is optimal if and only if the downlink channel gains are equal [25].
5Note that these rates are also the point-to-point capacities and therefore an upper bound on the capacity
region [28] for each link. Thus equation (2.15) gives the capacity region for the second phase of the DF
strategy [25].
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CHAPTER 3

Relaying Strategies based on Lattices

The reason to study lattices in the context of bidirectional relaying is motivated by the
shortcoming of the decode-and-forward (DF) strategy described in the last chapter, i.e.
the multiplexing loss. In this chapter it is shown that the group-property of a lattice in
combination with the linearity of the wireless channel allows the relay to decode a function
of the users messages instead of decoding each message individually and thereby avoiding
this loss. The chapter starts with a general introduction to lattices and nested lattice codes
while focusing on the application to the bidirectional relaying problem. The first section is
largely based on a few introductory texts about lattices1, in particular [30] and [31]. Then,
the modulo-and-forward (MF) strategy [15] is reviewed and slightly generalized. In [15]
the communication links from the relay to the two users are assumed to be symmetric and
to have equal SNR. Here the MF scheme is applied with nested lattice codes to the general
Gaussian sTRC as defined in the previous chapter and the achievable rates are given. After
that, it is shown that the capacity region of this network can be characterized to within
a constant gap by using a nested lattice code and superposition coding. This result is
similar to the one that was recently published in [7], but the proof presented here uses a
different technique for the uplink, following closely the analysis presented in [32] and [33].
Finally, two other relaying approaches that are based on lattices are briefly mentioned for
completeness: Even though very tight “gap-to-capacity” results are available, the capacity
region of the Gaussian sTRC is still not known in general.

1A recent tutorial paper on lattices for various problems of communication theory including communica-
tion networks can be found in [29].
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×
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RV (Λ)

Figure 3.1.: Visualization of important definitions and concepts regarding lattices in R2.

3.1. Introduction

3.1.1. Lattices

A lattice Λ is a discrete subgroup of n-dimensional space Rn and an element of Λ is called
a lattice point. In particular, this means that the all-zero vector 0 = (0, . . . , 0) is a lattice
point and for any two lattice points λ1, λ2 ∈ Λ the linear superposition λ1 + λ2 is also a
lattice point. Moreover if λ ∈ Λ then −λ ∈ Λ. The nearest neighbor lattice quantizer of a
lattice Λ is defined as

QΛ(x) = arg min
λ∈Λ
||x− λ|| (3.1)

and returns the closest lattice point to any given point x ∈ Rn, where || · || specifies the
Euclidean norm and ties are broken in a systematic fashion. Two points are said to be
“equivalent modulo Λ” if their difference is a lattice point. The modulo operation is defined
as

x mod Λ = x−QΛ(x) (3.2)

and satisfies the distributive property

(x mod Λ + y) mod Λ = (x + y) mod Λ. (3.3)

Associated with each lattice Λ is the fundamental Voronoi region or fundamental region
RV (Λ), which contains all points that are closer to the origin than to all other lattice
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points, i.e.
RV (Λ) = {x | QΛ(x) = 0}. (3.4)

Each lattice point in Λ is surrounded by a translation of the fundamental region (which is
then called the Voronoi region or Voronoi cell) and the union of all such regions is equal
to n-dimensional space Rn. A visualization of these concepts in two-dimensional space R2

is provided in Figure 3.1.
Important properties of a compact region R ⊂ Rn in n-dimensional space include (see [34])

• the volume
Vol(R) =

∫
R

dx, (3.5)

• the second moment per dimension or average energy of a uniform distribution U ∼
Unif(R) over the region

σ2(R) = 1
n

E
[
||U ||2

]
= 1
nVol(R)

∫
R
||x||2 dx, (3.6)

• and the normalized second moment

G(R) = σ2(R)
Vol(R)2/n . (3.7)

Note that for any region G(R) > 1/(2πe), where 1/(2πe) is the normalized second
moment of an n-ball for n→∞.

The above definitions apply to any compact bounding region in n-space (such as an n-ball
or n-cube), and in particular to the fundamental region of a lattice Λ. In this context an
abbreviated notation is used, i.e. instead of writing Vol(RV (Λ)) and so on, the volume,
second moment and normalized second moment of the fundamental region of a lattice Λ
are denoted by Vol(Λ), σ2(Λ), and G(Λ) respectively.
It is possible to characterize a lattice Λ with the help of a generator matrix G ∈ Rn×n.
Assuming that G has full rank then an n-dimensional Lattice is defined as

Λ = {λ = iG | i ∈ Zn}. (3.8)

With other words, Λ is the image of the integer lattice Zn under a linear transformation
of Rn [35].
The following lemma is of fundamental importance with regard to the relaying strategies
described in this chapter.
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mod ΛX ∈ RV (Λ)

U ∼ Unif(RV (Λ))

Y ∼ Unif(RV (Λ))

independent

independent

Figure 3.2.: Graphical illustration of the crypto lemma as a basic building block for the lattice
based relaying strategies.

Lemma 2 (Crypto lemma [31, 34]). Let U ∼ Unif(RV (Λ)) and X ∈ RV (Λ) be any
random vector statistically independent of U . Then the sum Y = X + U mod Λ is
uniformly distributed over RV (Λ) and statistically independent of X.

A graphical illustration of this lemma2 is shown in Figure 3.2. The crypto lemma is a
basic building block for the lattice based strategies described in this chapter. U is referred
to as a dither variable and statistically “decouples” Y from X.

3.1.2. Nested Lattice Codes

A coset of a lattice, denoted by Λ + x, is a translation of the original lattice by x, where
x ∈ Rn. Note that a lattice is geometrically uniform, in the sense that if x ∈ Λ then the
coset will be identical to the lattice. Now consider two lattices Λc and Λ where Λc ⊃ Λ,
i.e. Λ is a sublattice of Λc. Algebraically this induces a so called partition, denoted by
Λc/Λ, of Λc into cosets of Λ, where one coset is Λ itself. A nested lattice code, also known
as a Voronoi code3, which will be denoted by C(Λc/Λ), is defined as the set of all coset
leaders (or minimum-energy coset representatives) of the cosets that are introduced by this
partition. Geometrically this can be seen as an intersection of Λc with the fundamental
region of Λ, and algebraically as a reduction of Λc modulo Λ, i.e.

C(Λc/Λ) = {Λc ∩RV (Λ)} = {Λc mod Λ}. (3.9)

In this context Λc is referred to as the fine or coding lattice and Λ as the coarse or shaping
lattice. Note that any point in the fine lattice can be represented by a point in the coarse
lattice plus the corresponding coset leader such that Λc = Λ+C(Λc/Λ) which is also called
the coset leader decomposition. The number of codewords, i.e. the number of elements in

2The name of the lemma stems from the fact that it is impossible to infer any information about X

(“plaintext”) by observing Y (“cyphertext”) without knowing U (“key”) [34].
3According to [34] these codes were first called “Voronoi codes” or “Voronoi constellations” and later
“nested lattice codes”. We will use both terms throughout this thesis.
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Figure 3.3.: Visualization of nested lattices Λc ⊃ Λ and the corresponding nested lattice code
C(Λc/Λ) in two dimensions.

the code is given by
|C(Λc/Λ)| = Vol(Λ)

Vol(Λc)
, (3.10)

and the code rate of C(Λc/Λ) (in bits per dimension) is defined as

RLattice = 1
n

log2 |C(Λc/Λ)|. (3.11)

A visualization of the concepts which concern the nesting of lattices as well as nested
lattice codes can be found in Figure 3.3.

3.1.3. Goodness of a Lattice

The results presented in this thesis rely on the existence of certain types of lattices4 (and
nested lattices) which are good in the following senses:

Good shaping lattices. A lattice Λ is said to be Rogers-good if the covering efficiency
goes to 1 as n → ∞ [37]. This implies that the normalized second moment of Λ
approaches that of an n-ball, i.e. G(Λ)→ 1/(2πe) as n→∞.

4More precisely, the existence of sequences of lattices Λ(n), where a sequence is indexed by the dimension
n [36]. For convenience the superscript as well as the phrase “sequence of” are dropped.
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Good coding lattices. Let Z be a random vector distributed according to Z ∼ N (0, σ2I).
A lattice Λ is said to be Poltyrev-good if Pr({Z /∈ RV (Λ)}), i.e. the probability of Z

falling outside of the fundamental region of Λ, goes to zero exponentially as n→∞
for any σ2 < σ2(Λ).

Simultaneously good lattices. A lattice Λ is said to be simultaneously good, if Λ is both
Rogers-good and Poltyrev-good.

The main results about the existence of good lattices are summarized in the following list:

• There exist lattices Λ that are simultaneously good [37].

• There exist nested lattices Λc ⊃ Λ such that Λ is simultaneously good and Λc is
Poltyrev-good [31].

• There exist nested lattices Λc ⊃ Λ such that Λ and Λc are simultaneously good [36].

In the following example, it is shown how these results are used in order to derive achievable
rates for the relaying strategies. Moreover, the decoding method – lattice decoding – is
introduced.
Consider an additive white Gaussian noise (AWGN) channel model Y = X + Z with
Z ∼ N (0, σ2I) and a nested lattice code C(Λc/Λ), where both lattices are assumed to be
simultaneously good. The elements of the code, i.e. the lattice points, are used as channel
inputs and the receiver uses lattice decoding, which finds the closest lattice point to Y in
the coding lattice Λc:

X̂ = QΛc(Y ), (3.12)

where X̂ is the estimated codeword. Note that lattice decoding – as opposed maximum
likelihood (ML) decoding, which finds the closest lattice point to Y in the code C(Λc/Λ) –
does not take into account any boundary of the code and therefore preserves the symmetry
of the lattice [38]. In particular, this means that the decoding error at the receiver is
independent of the transmitted codeword and simply given by:

pe = Pr({X 6= QΛc(Y )}) = Pr({Z /∈ RV (Λc)}). (3.13)

Because Λc is Poltyrev-good, pe → 0 exponentially for n → ∞ as long as σ2 < σ2(Λc).
Note that the coding rate of C(Λc/Λ) can be written as

RLattice = 1
n

log2

( Vol(Λ)
Vol(Λc)

)
= 1

2 log2

(
σ2(Λ)
σ2(Λc)

)
+ on(1), (3.14)
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Figure 3.4.: Illustration of the basic idea behind PNC with nested lattice codes. The noise is
visualized as a small uncertainty region around the received lattice point.

where on(1) → 0 as n → ∞, because both lattices are Rogers-good (cp. (3.7) and the
definition of Rogers-goodness). If we assume σ2(Λ) = P and insert the condition for
reliable decoding into (3.14), it can be seen that this transmission scheme can reliably
approach any rate up to

RLattice <
1
2 log2

(
P

σ2

)
. (3.15)

3.2. PNC with Nested Lattice Codes

In this section the basic idea behind the use of nested lattice codes for PNC is illustrated.
Assume that the channel gains from the two users to the relay are given by har = hbr = 1.
Both users map their messages W a and W b one-to-one to codewords V a and V b from a
nested lattice code C(Λc/Λ). The users then simply transmit lattice points corresponding
to their messages. Because the channel gains are equal, these lattice points will “add up”
such that the relay receives a (noisy) lattice point, due to the group property and the
linearity of the wireless channel. The received lattice point is however not necessarily in
the code C(Λc/Λ). Lattice decoding with respect to the coding lattice Λc and applying the
modulo-operation with respect to the shaping lattice Λ allows the relay to recover a point
in C(Λc/Λ), provided that the noise is not too strong. See Figure 3.4 for a visualization
of this concept.
The relaying strategies described in the following sections are in a sense just extensions
and modifications of this general idea. Roughly, they differ from the above description in
the following aspects:

1. The nodes do not transmit lattice points, but dithered lattice points in accordance
with the crypto lemma. This dithering serves two purposes. First, it ensures that
the transmit power constraint is met because the dithered signals are uniformly
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Chapter 3. Relaying Strategies based on Lattices

distributed over the basic Voronoi region of Λ. Secondly, the transmitted signals are
statistically independent of the actual codewords.

2. At a receiving node linear minimum mean square error (MMSE) estimation is em-
ployed. The received signal is therefore multiplied by a linear scaling factor prior to
subtracting the dither variables. It is shown in [31] that for an AWGN channel this
linear scaling is key in order to achieve capacity. In [34] it is pointed out that this
linear MMSE estimation is not only sufficient but necessary.

3. For the general Gaussian sTRC the assumption har = hbr = 1 may not hold and
the lattice points can be “mismatched” after passing through the channel. In order
to circumvent this problem, superposition coding can be used for the user with the
better uplink channel gain. This user splits the message into two parts and encodes
the first part with a nested lattice code and the second part with a random Gaussian
codebook. The power allocation is chosen such that the lattice codewords by both
users are scaled correctly after passing through the channel. Note that this technique
requires the assumption of full CSI at the transmitter.

3.3. Modulo-and-forward

The MF strategy is proposed in [15] and described as a power-efficient alternative to
the AF scheme with less complexity compared to the DF scheme. In this section MF is
applied to the general Gaussian sTRC as defined in chapter 2, i.e. all channel gains can
be different, and the achievable rates are given. The description of the strategy and the
derivation of the achievable rates presented here differs from [15] in two aspects. First,
we use nested lattice codes instead of random codes. The use of structured codes is not
necessarily required as will become clear later, but it makes the connection of MF to
the PNC idea outlined in the previous section more apparent. Secondly, we introduce a
power allocation factor for the user who employs superposition coding. A complete block
diagram of the MF scheme is provided in Figure 3.5.

Encoding at the Users

It is assumed without loss of generality that har ≥ hbr and user a splits the message
vector W a into two parts (W ′

a,W
′′
a), the lattice-encoded message and an extra message,

where W ′
a has length nR′a and W ′′

a has length nR′′a. Both users use a nested lattice code
for encoding the messages W ′

a and W b respectively. The code for user a is denoted by
C(Λa/Λ) and the code for user b by C(Λb/Λ), where Λ is the common shaping lattice with
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Figure 3.5.: Complete block diagram for the MF strategy. All paths corresponding to superpo-
sition coding are depicted with dashed lines while all paths corresponding to lattice
coding are depicted with solid lines.
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Chapter 3. Relaying Strategies based on Lattices

σ2(Λ) = P , and Λa ⊃ Λ and Λb ⊃ Λ are coding lattices. All lattices are assumed to be
simultaneously good. The messages are one-to-one mapped to codewords W ′

a ↔ V a and
W b ↔ V b, where V a ∈ C(Λa/Λ) and V b ∈ C(Λb/Λ). These codewords are dithered prior
to transmission in accordance with the crypto lemma, i.e.

X ′a = (V a + Ua) mod Λ (3.16)

Xb = (V b + U b) mod Λ, (3.17)

where Ua and U b are independent dither variables, uniformly distributed over the funda-
mental Voronoi region of Λ, but known to all nodes. The signals X ′a and Xb are therefore
statistically independent of the chosen codewords and it is ensured that they have average
power σ2(Λ) = P . The extra message W ′′

a of user a is encoded with a random Gaussian
codebook with power P and the corresponding transmitted codeword is denoted by X ′′a.
User a then uses superposition coding to transmit both the lattice-encoded message and
the extra message according to

Xa =
√
θX ′a +

√
1− θX ′′a, (3.18)

where θ is a power allocation factor and 0 ≤ θ ≤ 1 in order to satisfy the power constraint.
For the transmitted signal of user b it is required that the (dithered) lattice codewords of
both users are scaled correctly at the relay. This may be achieved by multiplying Xb at
user b by

√
θhar/hbr prior to transmission. Note that the power constraint at user b is met

only if θ ≤ h2
br/h

2
ar and consequently it is required that 0 ≤ θ ≤ min(1, h2

br/h
2
ar). One can

check that by choosing θ smaller than min(1, h2
br/h

2
ar) transmit power at user b is actually

wasted. In [15] it is assumed that θ = min(1, h2
br/h

2
ar), i.e. the lattice codewords always

get the maximal available power and only the rest is used for the Gaussian codebook.
However, reducing the power that is used for transmitting the lattice codewords in favor
of increasing power that is used for transmitting the codeword corresponding to the extra
message of user a might be beneficial in terms of overall sum-rate throughput.

Uplink

Both users transmit the signals Xa and Xb and the relay receives

Y r = har(
√

1− θX ′′a +
√
θX ′a) + hbr

har
hbr

√
θXb + Zr

= har
√

1− θX ′′a + har
√
θ(X ′a + Xb) + Zr. (3.19)

where (3.19) shows that the signals corresponding to the lattice points add up as desired.
The relay first tries to decode the extra message of user a by treating all the other terms
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3.3. Modulo-and-forward

in (3.19) as noise. Note that X ′a and Xb are statistically independent and uniformly
distributed over the fundamental Voronoi region of Λ according to the crypto lemma.
Because Λ is Rogers-good, we can apply the so-called Gaussian approximation principle
and assume that the distribution of X ′a and Xb is Gaussian and that this approximation
becomes exact as n → ∞, i.e. X ′a and Xb are Gaussian in the limit [34]. Decoding will
therefore be successful with high probability if the rate of the extra message satisfies

R′′a < C
(

(1− θ)h2
arP

2θh2
arP + 1

)
. (3.20)

The relay can then subtract the codeword corresponding to the extra message from the
received signal5. After that, the resulting signal is scaled by α, the random dithers Ua

and U b are subtracted and the modulo-operation is applied:

Kr = (α(Y r − har
√

1− θX̂ ′′a)−Ua −U b) mod Λ

= (α(har
√
θ(X ′a + Xb) + Zr)−Ua −U b) mod Λ

(a)= ((V a + Ua) mod Λ−X ′a

+ (V b + U b) mod Λ−Xb

+ α(har
√
θ(X ′a + Xb) + Zr)−Ua −U b) mod Λ

(b)= (V a + V b + (αhar
√
θ − 1)(X ′a + Xb) + αZr) mod Λ

= (V a + V b + Z̃r) mod Λ, (3.21)

where the so-called effective noise Z̃r is defined as

Z̃r = (αhar
√
θ − 1)(X ′a + Xb)︸ ︷︷ ︸

self-noise

+αZr. (3.22)

Note that for step (a) the identities (3.16) and (3.17) are used and for step (b) the dis-
tributive property of the modulo-operation is applied. The above calculation reveals that
the relay receives the superposition of two lattice codewords6 plus an effective noise term
(modulo Λ). The effect of scaling the received signal prior to subtracting the dithers can
be seen in equation (3.22). Suppose that α = 1/(har

√
θ) for which the term marked as

self-noise would be zero. This choice of α would correspond to a usual linear equalizer,
which inverts the effect of the channel. The SNR in this case would amount to θh2

arP . For
now, the choice of α is left open and is described and explained further below.

5In the following it will be assumed that all intermediate decoding steps are successful and the estimates
are equal to actually transmitted signals.

6However, because the coding lattices are different, this superposition is not necessarily a lattice point.
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Relaying Strategy

An important characteristic of the MF strategy is that the relay simply forwards Kr, i.e.
the “noisy” superposition of the two lattice points7. The relay uses superposition coding
in order to transmit

X ′r = (Kr + U r) mod Λ, (3.23)

which is the dithered version of Kr, and the decoded extra message of user a according
to

Xr = √µX ′r +
√

1− µX̂ ′′a, (3.24)

where µ is a power allocation and 0 ≤ µ ≤ 1 in order to satisfy the power constraint at
the relay.

Downlink

The two users receive the following signals:

Y a = hra
√
µX ′r + hra

√
1− µX̂ ′′a + Za (3.25)

Y b = hrb
√
µX ′r + hrb

√
1− µX̂ ′′a + Zb. (3.26)

User a can use SI in order to remove the second term in the sum of (3.25), because X ′′a is
known and decoding is assumed to be successful at the relay. User b attempts to decode
X̂ ′′a by treating the other parts of the signal as noise. By the same argument as before,
the signal X ′r is Gaussian in the limit and decoding will be successful if

R′′a < C
(

(1− µ)h2
rbP

µh2
rbP + 1

)
. (3.27)

The codeword corresponding to the decoded extra message can then be stripped off. After
that, both users scale the resulting signals by βa and βb, and subtract the random dither
that is added at the relay according to

Ka = (βa(Y a − hra
√

1− µX ′′a)−U r) mod Λ (3.28)

Kb = (βb(Y b − hrb
√

1− µ ˆ̂
X ′′a)−U r) mod Λ, (3.29)

where ˆ̂
X ′′a denotes the estimate of the relay’s estimate of the Gaussian codeword of user

a. In the following, the calculation of Ka is described while the steps are similar to the
7Note that, because the relay does not perform lattice decoding, there is no necessity to use the same
coding lattices at the users. In fact, in [15] the codewords are assumed to be uniformly distributed over
the fundamental Voronoi region of the shaping lattice Λ.
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calculation for Kr at the relay above, i.e.

Ka = (βa(Y a − hra
√

1− µX ′′a)−U r) mod Λ
(a)=
(
(Kr + U r) mod Λ−X ′r + βahra

√
µX ′r + βaZa −U r

)
mod Λ

(b)=
(
Kr + (βahra

√
µ− 1)X ′r + βaZa

)
mod Λ, (3.30)

where for step (a) the identity (3.23) and for step (b) the distributive property of the
modulo-operation is used. Recall that Kr is the noisy superposition of two lattice code-
words defined by equation (3.21). Inserting this into (3.30) gives

Ka = ( V a︸︷︷︸
known

+V b (3.31)

+ (αhar
√
θ − 1)( X ′a︸︷︷︸

known

+Xb) + αZr (3.32)

+ (βahra
√
µ− 1)X ′r + βaZa) mod Λ. (3.33)

User a can cancel out the parts of the signal that are marked as known, i.e. the transmitted
lattice point V a and also some of the self-noise introduced at the relay. This yields

K̃a =
(
V b + (αhar

√
θ − 1)Xb + αZr + (βahra

√
µ− 1)X ′r + βaZa

)
mod Λ (3.34)

= (V b + Z̃a) mod Λ, (3.35)

where the effective noise Z̃a is defined as

Z̃a = (αhar
√
θ − 1)Xb + αZr + (βahra

√
µ− 1)X ′r + βaZa. (3.36)

Similar steps can be applied for the derivation of K̃b which is given by

K̃b =
(
V a + (αhar

√
θ − 1)X ′a + αZr + (βbhrb

√
µ− 1)Xr + βbZb

)
mod Λ (3.37)

= (V a + Z̃b) mod Λ, (3.38)

where the effective noise Z̃b is defined as

Z̃b = (αhar
√
θ − 1)X ′a + αZr + (βbhrb

√
µ− 1)X ′r + βbZb. (3.39)

In summary, by applying the MF scheme both users “see” the transmitted lattice point of
the respective other user plus some effective noise which is given by (3.36) for user a and
by (3.39) for user b.
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Lattice Decoding at the Users

It is assumed that both users employ lattice decoding in order estimate the lattice code-
word, i.e. user a computes V̂ b = QΛb

(K̃a) while user b computes V̂ a = QΛa(K̃b). The
scaling factors α, βa and βb are chosen such that the effective noise power of Z̃a and Z̃b

is minimized. The derivation can be found in Appendix A and with this choice for the
scaling factors the effective noise power of Z̃a and Z̃b are then given by:

σ̃2
a = 1

n
E
[
||Z̃a||2

]
= P

θh2
arP + 1 + P

µh2
raP + 1 (3.40)

σ̃2
b = 1

n
E
[
||Z̃b||2

]
= P

θh2
arP + 1 + P

µh2
rbP + 1

. (3.41)

It can be seen from (3.40) and (3.41) that the noise power is greater for the user with
the weaker downlink channel gain. In the following, we describe the condition for reliable
decoding at user a. The probability of decoding error is given by

pe = Pr({V b 6= QΛb
(K̃a)}) (3.42)

= Pr({Z̃a mod Λ /∈ RV (Λc)}) (3.43)

≤ Pr({Z̃a /∈ RV (Λc)}), (3.44)

where the second equality follows from the symmetry of lattice decoding and the inequality
follows from the fact that the modulo operation is a many-to-one mapping [34]. Note
that Z̃a is Gaussian in the limit and therefore approaches a Gaussian distribution as
n → ∞. With this Gaussian approximation for Z̃a, the error probability (3.44) goes to
zero exponentially8 for n → ∞ as long as σ̃2

a < σ2(Λb) because the coding lattice Λb is
Poltyrev-good. Recall that the rate of C(Λb/Λ) can be written as

Rb = 1
n

log2

( Vol(Λ)
Vol(Λb)

)
(3.45)

= 1
2 log2

(
σ2(Λ)
σ2(Λb)

)
+ on(1) (3.46)

where on(1) → 0 as n → ∞, because both lattices are Rogers-good. It can be seen that
the message of user b can reliably approach any rate up to

Rb <
1
2 log2

(
σ2(Λ)
σ̃2
a

)
= 1

2 log2

(
P

σ̃2
a

)
(3.47)

and inserting (3.40) into (3.47) yields:

Rb <
1
2 log2

 P
P

θh2
arP+1 + P

µh2
raP+1

 = 1
2 log2

(
1 + θh2

arPµh
2
raP − 1

θh2
arP + µh2

raP + 2

)
. (3.48)

8For a detailed analysis including error exponents see [31].
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For user b the same calculation can be done which results in the following rate constraint
for the lattice-encoded message of user a:

R′′a <
1
2 log2

(
1 + θh2

arPµh
2
rbP − 1

θh2
arP + µh2

rbP + 2

)
. (3.49)

In summary, the achievable rates for MF are given by

Ra < C
(

θh2
arPµh

2
rbP − 1

θh2
arP + µh2

rbP + 2

)
+ min

(
C
(

(1− µ)h2
rbP

µh2
rbP + 1

)
,C
(

(1− θ)h2
arP

2θh2
arP + 1

))
(3.50)

Rb < C
(

θh2
arPµh

2
raP − 1

θh2
arP + µh2

raP + 2

)
(3.51)

for any choice of 0 ≤ θ ≤ min(1, h2
br/h

2
ar) and 0 ≤ µ ≤ 1.

3.4. Achievability of the Capacity Region to Within a Constant
Gap

In this section it is shown that the capacity region of the Gaussian sTRC can be charac-
terized to within a constant gap. This is made precise with the following theorem.

Theorem 1. The cut-set region Rcut of the Gaussian sTRC is achievable to within 1/2
bits per dimension for each user, i.e. if (Ra, Rb) ∈ Rcut, then ([Ra − 1/2]+, [Rb − 1/2]+)
is achievable, where [x]+ def.= max(x, 0).

Theorem 1 is proved with a similar superposition coding technique as used in the MF
strategy. However, the relay performs lattice decoding instead of broadcasting a noisy
superposition of two lattice points. Moreover, for the downlink a nested, random Gaussian
codebook is used. This is similar to the downlink strategies that are described in [7]
and [39]. Note that in [7] a complete proof of theorem 1 is also provided. A particular
strategy based different shaping lattices is considered for the uplink phase which is different
from the approach described in the following.

Proof Outline

The proof involves the following main steps:

• First it is shown that it is sufficient to proof theorem 1 for the channel configuration
where har = hrb = h and hbr = hra = h̄ with h̄ ≤ h. Roughly, all other channel
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Chapter 3. Relaying Strategies based on Lattices

configurations can be converted to this one without changing the cut-set bound. The
case h̄ > h follows by symmetry.

• The uplink phase of the achievability strategy is based on the uplink phase of the
MF strategy described in the previous section (cp. Figure 3.5 (a)). However, the
relay uses lattice decoding to decode the sum of the users lattice codewords (modulo
Λ). Then, after the uplink phase the relay is aware of the extra message of user a as
well as a function of the lattice codewords of the users. The latter can be regarded
as a structured binning of the common-rate message of user a and the message of
user b [7].

• For the downlink phase, a two-dimensional (or nested) random Gaussian codebook
is used to convey the structured binning reliably to both users as well as the ex-
tra message from user a to user b. From the binning, each user can extract the
corresponding message of the other user.

In the following subsection the proof is described in detail.

3.4.1. Proof

It is assumed without loss of generality that the weakest of the four channel gains is either
hbr or hrb (i.e. a gain in the path b → a). The following lemma, which is a modified
version of lemma 1 in [32] and lemma 2 in [33], then simplifies the number of channel gain
orderings that must be considered in order to proof theorem 1.

Lemma 3. For the case where the weakest channel gain is either hbr or hrb, it is possible
to convert the Gaussian sTRC with parameters parameters (P, har, hbr, hra, hrb) to the case
with parameters (P̄ , h, h, h′, h′) satisfying h′ ≤ h without changing the cut-set bound.

Proof. See Figure 3.6 for an illustration, where Cij
def.= C(h2

ijP ). We have two (indepen-
dent) orderings for Car,Crb and Cbr,Cra respectively which are depicted in either black
or red color. The operations that are involved in order to convert the channel to the case
described in the lemma are depicted in the picture with the corresponding color.

It can now be assumed that har = hrb, hbr = hra and har ≥ hbr without loss of generality.
The encoding process at the users is similar to the encoding process for the MF strategy
described in the previous section and only the differences are pointed here. In particular
user a splits its message into two parts W a = (W ′

a,W
′′
a), where the lattice-encoded

message W ′
a has the same length nRb as W b, and the extra message has length nR′′a. W ′

a

and W b are both encoded using the same nested lattice code C(Λc/Λ), where both lattices
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Rcut

Rb

RaCar

Crb

Crb

Car

CbrCra

CraCbr

add extra noise at user b
reduce power at user a

add extra noise at user a
reduce power at user b

Figure 3.6.: Picture for the proof of lemma 3. Note that the smallest channel gain is in the path
b→ a.

are simultaneously good. The codewords are dithered prior to transmission as before. The
extra message of user a is encoded with a random Gaussian codebook. In contrast to the
MF scheme, the power allocation factor for the superposition coding at user a is given
by θ = h2

br/h
2
ar and consequently no scaling of the transmitted signal of user b occurs

(cp. Figure 3.5 (a)). This means that user b always transmits with the maximal available
power.

Uplink

The two users transmit their signals and the relay first decodes the extra message of user
a. The condition for reliable decoding of W ′′

a at the relay is given by

R′′a < C
(

(h2
ar − h2

br)P
2h2

brP + 1

)
, (3.52)

which follows from equation (3.20) if θ is chosen as described. The codeword corresponding
to the extra message of user a can then be stripped off the received signal. After scaling
the resulting signal by α and subtracting the dither variables, the relay obtains (cp. (3.21)
and (3.22))

Kr = (V a + V b + Z̃r) mod Λ, (3.53)

where the effective noise Z̃r is defined as

Z̃r = (αhbr − 1)(X ′a + Xb) + αZr. (3.54)
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The scaling factor α is chosen such that the effective noise power is minimized and the
calculation is included in Appendix A. For this choice of α the effective noise power of Z̃r

is given by
σ̃2
r = 1

n
E
[
||Z̃r||2

]
= 2P

2h2
brP + 1

. (3.55)

The relay then uses lattice decoding according to V̂ = QΛc(Kr) in order to estimate the
superposition of the two transmitted lattice points (modulo Λ), i.e.

V = (V a + V b) mod Λ. (3.56)

Note that V a and V b are both lattice points in the same coding lattice. Therefore, the
superposition described by (3.56) is also a lattice point. The condition for reliable decoding
with this method is given by

Rb <
1
2 log2

(
P

σ̃2
r

)
= 1

2 log2

(1
2 + h2

brP

)
. (3.57)

The error probability of lattice decoding (i.e. the probability that the effective noise Z̃r

falls outside the fundamental region of Λc) goes to zero exponentially as n → ∞ by the
virtue of Λc being Poltyrev-good [6].

Downlink

It is assumed that decoding at the relay is successful. Then the relay knows both the
extra message W ′′

a of user a as well as V = (V a + V b) mod Λ, i.e. a function of the
lattice codewords of the users. If the codewords of the nested lattice code C(Λc/Λ) are
interpreted as bins, then the latter equation can be regarded as a structured binning of
message pairs [7]: Each of the 2nRb bins (one for each lattice codeword) “contains” 2nRb

message pairs.
The codebook construction for the downlink is visualized in Figure 3.7. The 2nRa code-
words Xr are assumed to be randomly generated according to a Gaussian distribution.
The codewords are arranged in such a way that a two-dimensional codebook is formed.
The first dimension is indexed by the extra message of user a (i.e. the codebook has
M = 2n(Ra−Rb) columns) and the second dimension is indexed by the bin number corre-
sponding to the received lattice codeword V (i.e. the codebook has N = 2nRb rows). This
can also be seen as a nested code, in the sense that each column of the two-dimensional
code forms a codebook of its own and is a sub-code “nested” in the original code, e.g. the
codewords that are shaded in Figure 3.7. The relay then simply broadcasts the codeword
Xr(i, j), that corresponds to the received extra message j and the bin number i.
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a

Figure 3.7.: Two-dimensional codebook generation at the relay. The first dimension is indexed by
the extra message of user a and the second dimension by the bin index corresponding
to the received lattice codeword. Each column forms a sub-code.

Recall that user a knows the extra message X ′′a as SI and therefore only needs to decode
with respect to a particular sub-code. It can be shown with joint typicality arguments
that the condition for reliable decoding at user a is given by [26]

Rb <
1
2 log2(1 + h2

raP ) = C
(
h2
raP

)
. (3.58)

User a then knows the bin index that is received at the relay. User b cannot exploit any
SI for decoding and therefore performs decoding with respect to all codewords of the two-
dimensional codebook, which has cardinality 2nRa . The condition for reliable decoding is
therefore given by

Ra <
1
2 log2(1 + h2

rbP ) = C
(
h2
rbP

)
. (3.59)

User b then knows both the extra message of user a as well as the bin index that is received
at the relay. Note that if each user knows the correct bin index, the message of the other
user can be obtained by calculating

(V − V a) mod Λ = ((V a + V b) mod Λ− V a) mod Λ = V b (3.60)

for user a and

(V − V b) mod Λ = ((V a + V b) mod Λ− V b) mod Λ = V a (3.61)

for user b. Also note that (3.58) and (3.59) correspond to the capacity region of the
downlink phase revealing that the described strategy for the downlink is optimal.
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Rcut

R̄ =?

achievable

Rb

Ra

Lattice
Code

Extra
Message

δa

δb

Figure 3.8.: Visualization of the achievable rate region in comparison to the cut-set region and
the (unknown) capacity region .

Gap Analysis

Figure 3.8 shows a conceptual visualization of the achievable rate region for the described
strategy in comparison to the cut-set region Rcut. For user b the gap δb to the cut-set can
be upper-bounded by

δb = 1
2 log2(1 + h2

brP )− 1
2 log2

(1
2 + h2

brP

)
(3.62)

= 1
2 log2(1 + h2

brP )− 1
2 log2(1 + 2h2

brP ) + 1
2 (3.63)

= 1
2 log2

(
1 + h2

brP

1 + 2h2
brP

)
+ 1

2 (3.64)

<
1
2 . (3.65)

For user a the gap δa can be upper-bounded by

δa = 1
2 log2(1 + h2

arP )− 1
2 log2

(1
2 + h2

brP

)
− 1

2 log2

(
1 + (h2

ar − h2
br)P

2h2
brP + 1

)
(3.66)

= 1
2 log2(1 + h2

arP )− 1
2 log2(1 + 2h2

brP )− 1
2 log2

(
1 + (h2

ar − h2
br)P

2h2
brP + 1

)
+ 1

2 (3.67)

= 1
2 log2(1 + h2

arP )− 1
2 log2(1 + h2

brP + h2
arP ) + 1

2 (3.68)

= 1
2 log2

(
1 + h2

arP

1 + h2
brP + h2

arP

)
+ 1

2 (3.69)

<
1
2 . (3.70)
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This proofs the theorem. Moreover, from (3.64) it can be seen that the gap vanishes for
user b for fixed channel gains and increasing node power, i.e. δb → 0 as P →∞. Also from
(3.69) it can be seen that the gap for user a is close to zero for fixed channel gains and
increasing node power if the uplink channel gains are almost equal. However, the gap is
close to 1/2 if the uplink channel gain for user b is small compared to the uplink channel
gain of user a, i.e. if hbr . har, δa ≈ 0 as P →∞ and if hbr � har, δa ≈ 1/2 as P →∞.

3.5. Other Approaches

In this section two other approaches for the Gaussian sTRC that are based on lattices are
briefly mentioned for completeness.
In [5] the use of lattice chains is considered. In particular user a uses C(Λc/ΛSa ) and user
b uses C(Λc/ΛSb ) where Λc ⊃ ΛSb ⊃ ΛSa forms a lattice chain, i.e. the nested lattice codes
of the users are generated with the same coding lattice but different shaping lattices in
order to account for asymmetric channel gains. It is shown that the achievable rate pairs
for the Gaussian sTRC using this approach are given by

Ra < min

[1
2 log2

(
h2
ar

h2
ar + h2

br

+ h2
arP

)]+

,
1
2 log2(1 + h2

rbP )


Rb < min

[1
2 log2

(
h2
br

h2
br + h2

ar

+ h2
brP

)]+

,
1
2 log2(1 + h2

raP )

 ,
(3.71)

where [x]+ def.= max(x, 0). This result also implies a gap of 1/2 bit per dimension to
capacity for each user. Moreover, the gap to the cut-set bound vanishes for increasing
uplink SNR for both users, i.e. this scheme is essentially optimal when the uplink SNR is
high.
Next to this, the compute-and-forward (CF) strategy [12] provides another approach for
this network model which is also based on nested lattice codes. It should be noted however,
that CF is much more general and provides a whole framework for computing functions
of messages over noisy multi-access channels. Also, this approach is very relevant from
a practical implementation point-of-view because no CSI is required at the users in the
uplink phase. The main idea can be described as follows. The users transmit (dithered)
codewords using the same nested lattice code. If fading occurs, i.e. if the uplink channel
gains are unequal, the relay tries to recover an integer combination of the codewords,
which is itself a codeword again. In [16] a tutorial introduction for CF is included.
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CHAPTER 4

Sum Rate Comparison

In this chapter the relaying strategies that have been described in the previous chapters,
namely amplify-and-forward (AF), decode-and-forward (DF), and modulo-and-forward
(MF), are compared in terms of achievable sum rate. The sum rate is denoted by Rsum =
Ra +Rb and is a measure of total throughput for the network. We compare the maximal
sum rate that is achievable with the aforementioned relaying strategies for different channel
parameters P , har, hbr, hra and hrb. At first, the symmetric case is considered, where all
channel gains are set to 1 and the sum rate is plotted for varying node power P . After that,
three cases are considered where the channel gains have different values. In particular we
show the sum rate performance of the strategies for the case where the uplink channel
gains (har, hbr) are weak compared to the downlink channel gains (hra, hrb), then for the
case where the uplink gains are strong compared to the downlink gains, and finally for the
case where the channel gains are reciprocal, i.e. where har = hra and hbr = hrb.
For MF the power allocation factor at user a is fixed at θ = min(1, h2

br/h
2
ar), i.e. the

codewords of the nested lattice codes of both users get the maximum power and only the
rest that is available at user a is allocated to the extra message. The power allocation
factor µ at the relay is optimized numerically. This means that MF is effectively applied
and compared as it is proposed in [15]. However, we also illustrate the benefit of optimizing
θ numerically with a short example.
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Chapter 4. Sum Rate Comparison

4.1. Symmetric Case

The first case that is considered is the symmetric case, where all channel gains are equal
and given by har = 1, hbr = 1, hrb = 1, and hra = 1. The maximal sum rates for the
different strategies are:

AF: Rsum < log2

(
1 + P

P

3P + 1

)
(4.1)

DF: Rsum <
1
2 log2(1 + 2P ) (4.2)

MF: Rsum < log2

(1
2 + P

2

)
(4.3)

An upper bound follows from the cut-set region and is given by

Rsum < log2(1 + P ). (4.4)

In addition to the relaying strategies AF, DF, and MF, for this channel configuration we
also plot the maximal sum rate of the achievability strategy that is used in the proof of
section 3.4 in the previous chapter. For the symmetric case the maximal sum rate for this
strategy is given by

Rsum < log2

(1
2 + P

)
. (4.5)

Note that this is identical to the maximal sum rate that can be achieved with CF [16]
as well as the lattice chain scheme [7] (cp. equation (3.71)). With other words, these
approaches are identical in terms of sum rate for the symmetric case and for simplicity we
refer to these schemes as CF in the following.
The achievable sum rates are plotted in Figure 4.1. It can be seen that in the low SNR
regime (P < 0 dB) the DF strategy dominates the other strategies and appears to be
optimal for decreasing node power P . If we compare the achievable sum rate for DF to
the upper bound, i.e.

1
2 log2(1 + 2P ) ≤ log2(1 + P ) = 1

2 log2(1 + 2P + P 2), (4.6)

it can be seen that at low SNR, the term P 2 becomes small compared to the other terms
and therefore the DF strategy in fact approaches the upper bound for decreasing node
power. The AF scheme has very poor performance at low SNR for this channel configura-
tion because the relay does not remove the noise that is introduced in the uplink but rather
amplifies the received signal and therefore also the noise. It can be seen from (4.1) that for
low node power P the maximal sum rate for AF can be approximated by ≈ log2(1 + P 2),
i.e. the sum rate approaches zero much more quickly than the sum rate for the DF scheme
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Figure 4.1.: Achievable sum rates for the symmetric case, i.e. har = 1, hbr = 1, hra = 1, and
hrb = 1.

for P → 0. Both MF and CF don’t achieve a positive sum rate below a certain threshold,
which is given by 0 dB and −3 dB, respectively. For high node power (P > 0 dB), the
situation is very different and almost reverses. First, it can be seen that all strategies
except DF have a positive slope of 1 bit per 3 dB power increase. For DF however, every
3 dB increase in node power only yields 1/2 bit increase in sum rate and therefore this
strategy gets outperformed by the other strategies at high SNR. The maximal sum rate
for AF can be approximated by ≈ log2(P/3) ≈ log2(P )−1.6 and for MF by ≈ log2(P )−1
at high SNR. Recall that both strategies don’t decode and therefore noise accumulates.
However, MF is superior to AF at high SNR for this channel configuration. Finally, it can
be observed that the CF approach is essentially optimal at high SNR and the gap to the
upper bound approaches zero for increasing node power which can be seen from (4.5) and
(4.4).
In the following, we briefly illustrate the effect of the power allocation factor θ in the
MF scheme on the sum rate. In Figure 4.2 the maximal sum rate that is achievable with
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Figure 4.2.: Effect of the power allocation factor θ on the sum rate for the MF scheme.

MF is plotted for two different scenarios. In the first scenario (solid line), the power
allocation factor θ is set to the maximal value, i.e. θ = min(1, h2

br/h
2
ar), and consequently

the resulting curve is identical to the red curve plotted in Figure 4.1. In the second scenario
(dashed line), the power allocation factor θ is chosen such that the overall sum rate Rsum

is maximized. It can be seen that for low node power P , it is beneficial to reduce the
power that is used for the lattice in favor of increasing the power for the extra message at
user a.

4.2. Asymmetric Cases

In the following, three cases are considered that demonstrate the sum rate performance of
the strategies for asymmetric channel configurations.

4.2.1. Weak Uplink

First, we consider the case where the channel coefficients are given by har = −20 dB,
hbr = −30 dB, hra = 0 dB, and hrb = 0 dB. This implies that the uplink SNR is weak
compared to the downlink SNR. The sum rates that can be achieved with the different
strategies are plotted in Figure 4.3. It can be seen that AF performs very close to the
upper bound for the depicted range of P . MF is slightly outperformed by AF because
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Figure 4.3.: Achievable sum rates for har = −20 dB, hbr = −30 dB, hra = 0 dB, and hrb = 0 dB.

the uplink channel gains are chosen to be unequal and superposition coding is used. For
the case where the uplink gains are equal (e.g. har = −20 dB and hbr = −20 dB) the
performance of AF and MF becomes almost identical (not shown here). It can also be
seen that both schemes outperform DF at high SNR. The gap to the upper bound for DF
becomes more pronounced when the node power P is increased.

4.2.2. Strong Uplink

Now we consider the case where the uplink gains are strong compared to the downlink
gains, e.g. har = 0 dB, hbr = 0 dB, hra = −15 dB, and hrb = −25 dB. The achievable
sum rates for this channel configuration are plotted in Figure 4.4. It can be seen that for
this case, DF performs very close to the upper bound is in fact optimal for P < 43 dB.
This can be explained by the fact that in this scenario the sum rate constraint for the
DF scheme (cp. equation (2.16)) is not active and therefore does not limit the achievable
sum rates. Then, it is in fact optimal to fully decode both messages at the relay and no
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Figure 4.4.: Achievable sum rates for har = 0 dB, hbr = 0 dB, hra = −15 dB, and hrb = −25 dB.

multiplexing loss occurs. However, the slope changes for P > 43 dB and the DF strategy
gets outperformed by the other two strategies for increasing node power. It can also be
seen that MF also performs very close to the upper bound and outperforms AF for the
depicted range of P in this scenario. Note that the channel gains in the uplink are equal
and therefore no superposition coding is used here (i.e. θ = 1) for MF, i.e. both users only
use a nested lattice code.

4.2.3. Reciprocal Gains

Finally, we consider the case where the channel gains are given by har = 0 dB, hbr =
−10 dB, hra = 0 dB, and hrb = −10 dB, i.e. the channel gains are reciprocal. The
achievable sum rates are plotted in Figure 4.5. It can be seen that for P < 20 dB the
DF scheme outperforms the two other schemes. However, for P > 20 dB the slope of
the DF scheme changes because the sum rate constraint becomes active. Therefore the
performance gap of the DF to the cut-set bound increases as P increases. For P > 22 dB
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Figure 4.5.: Achievable sum rates for har = 0 dB, hbr = −10 dB, hra = 0 dB, and hrb = −10 dB.

the MF scheme achieves the highest sum rate among the considered strategies, followed by
the AF scheme. In this case, none of the considered strategies is optimal (or approaches
optimality) for P > 20 dB.

4.3. Discussion

The above comparison reveals that it is rather difficult to make generalized statements
about the achievable sum rate performance of the different strategies. In general, the
performance is highly dependent on the realization of the channel gains and also on the
node power P . In fact, for fixed channel gains the sum rate performance can change sig-
nificantly with increasing node power P and different schemes perform better for different
SNR regimes. It is however possible to identify a few situations where some schemes are
strictly better than others. For example the DF scheme is always optimal if the sum rate
constraint is already implied by the individual rate constraints for each user. This may be
the case when the uplink is very strong compared to the downlink. For this scenario, MF

45



Chapter 4. Sum Rate Comparison

also performs very close to the upper bound. The AF strategy shows good performance
for the case when the uplink is weak compared to the downlink.
A more exhaustive comparison of different strategies for the Gaussian TRC (including AF
and DF, but not including MF) can be found in [40]. In addition to sum rates the authors
also plot the rate regions that are achievable with the different strategies for various
channel conditions. However, the authors also come to the conclusion that in general
different schemes are optimal (or approach optimality) for different channel configurations
and that “the rate regions that are achievable are not subsets of one another” [40].
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CHAPTER 5

The Separated Two-Way Two-Relay Channel

In this chapter the network is modified by adding a second relay, i.e. two relays r1 and
r2 assist in the message exchange between the two users a and b. It is assumed that
there exists no direct communication link between the users. Similarly, there is no link
between user a and the second relay r2, nor is there a link between the first relay r1 and
user b. Hence, both relays are necessary in order to enable the message exchange. The
resulting setup can be seen as a multi-hop extension of the sTRC and consequently this
network is termed the (fully) separated two-way two-relay channel (sTTRC). See Figure
5.1 for an illustration of the network topology, where Wa and Wb are the user messages,
Ŵa and Ŵb are the estimates, and (Xj , Yj) are the input and output variables associated
with each device node j ∈ {a, r1, r2, b}. Note that both relays r1 and r2 do not have any
message to transmit and are not necessarily required to decode any of the user messages
(i.e. no source or sink nodes are attached to the relay device nodes). In the following,
FD nodes are considered and we begin by assuming a noiseless, finite field physical layer

device source sink link

a r1 r2 b

(Xa, Ya) (Xr1 , Yr1) (Xr2 , Yr2) (Xb, Yb)

Wa Wb

ŴaŴb

Figure 5.1.: Illustration of the network topology for the sTTRC.
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in order to introduce the proposed block transmission strategy. All channel input and
output variables are binary and interference at the relay nodes is modeled as the modulo-
2 sum of two binary signals. For this model, two strategies are described where the users
can simultaneously transmit their messages error-free at any rate up to 1 bit per channel
use. After that, (binary) noise is included in the finite field model. It is shown that the
cut-set region of the resulting network is achievable by using nested linear codes. Thus,
for binary symmetric channels (BSCs) the capacity region of the sTTRC is known and
coincides with the cut-set region. This is similar to the result that has been shown for
the binary symmetric case of the sTRC [5, 39]. Finally, an achievable rate region for the
Gaussian case under certain channel conditions is derived. In particular, we assume that
all transmitted signals are average power constrained to P , the channel gains are 1, but
all noise variances can be different. This channel configuration in combination with the
proposed block transmission protocol leads to a new variant of the “broadcasting with
user side-information” problem. In particular, in each transmission block the relay r1

broadcasts two messages1 – one low-rate message destined for user a and one high-rate
message destined for the second relay r2. The new element is that, at the same time, user
b also transmits to r2. Therefore it is required that the broadcast signal of r1 is suitable
for PNC, such that r2 can decode a function of the messages transmitted by r1 and b.
The employed coding scheme is based on a lattice partition chain. It is shown that the
achievable rate region derived with this strategy is within 1/2 bit per dimension of the
capacity region for each user. Moreover, the gap vanishes for fixed noise variances and
increasing node power, i.e. the scheme closely approaches the capacity region at high SNR.

5.1. Finite Field Physical Layer

Inspired by [16], at first a finite field physical layer is considered in order to become familiar
with the network as well as to introduce the proposed block transmission strategy. In the
following, it is assumed that all nodes have FD capability, i.e. a device node can receive
and transmit at the same time. The definitions of messages, rates, encoding and decoding
functions, error probability, and the capacity region for the sTRC in chapter 2 directly
apply to this network as well. It is assumed that all input and output variables are binary
and take on values in {0, 1}. Interference at the relay nodes is modeled as the modulo-2
sum of two incoming signals. First, the noiseless case is described and then binary noise
is added (modulo 2) to each output variable, which can be seen as a binary symmetric
channel model.

1More precisely, functions of messages.
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5.1.1. Noiseless Case

In this subsection we assume that the channel is noiseless and represented by the following
set of equations:

Ya = Xr1 (5.1a)

Yr1 = Xa ⊕Xr2 (5.1b)

Yr2 = Xr1 ⊕Xb (5.1c)

Yb = Xr2 . (5.1d)

The channel is memoryless and the ith channel use or transmission block2 is denoted by
X

(i)
a for the input variable of user a and similarly for the other variables. User a wants to

transmit the message vector W a = (u(1)
a , u

(2)
a , . . . , u

(M)
a ) ∈ {0, 1}M to user b, where we call

the individual bits u “information bits” or “packets”. Similarly user b wants to transmit
the message vector W b = (u(1)

b , u
(2)
b , . . . , u

(M)
b ) ∈ {0, 1}M to user a. As we are going to use

the channel M + 2 times in order to exchange these bits, the transmission rate for both
users is given by Ra = Rb = M/(M + 2) in bits per channel use3.
One possible strategy for exchanging these bits would be as follows. The users transmit

X(i)
a = u(i)

a (5.2)

X
(i)
b = u

(i)
b (5.3)

at time i. The relays broadcast the received signal given by (5.1b) and (5.1c) in the next
channel use according to

X(i)
r1 = Y (i−1)

r1 (5.4)

X(i)
r2 = Y (i−1)

r2 , (5.5)

where X(1)
r1

def.= 0 and X
(1)
r2

def.= 0. What must be shown is that this is a solution, in the
sense that each user is able to recover the bits of the other user based on the received
channel outputs and the own transmitted bits. The received signal of user a in the ith

2For the noiseless case each channel use can be seen as a transmission block because no coding is required.
3Smaller or unequal user rates may be achieved through zero-padding the message vector.
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user a relay r1 relay r2 user b
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u
(i−2)
b u
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u
(i)
a

u
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u
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D DDD D D

(b) strategy 2

Figure 5.2.: Block diagrams for the noiseless finite field physical layer model of the sTTRC.

channel use is given by

Y (i)
a = X(i)

r1 = Y (i−1)
r1 = X(i−1)

a ⊕X(i−1)
r2

= u(i−1)
a ⊕ Y (i−2)

r2

= u(i−1)
a ⊕X(i−2)

r1 ⊕X(i−2)
b

= u(i−1)
a ⊕X(i−2)

r1 ⊕ u(i−2)
b

= u(i−1)
a ⊕ Y (i−2)

a︸ ︷︷ ︸
known

⊕u(i−2)
b . (5.6)

It can be seen that all parts of the received signal are known to user a as SI except the
packet u(i−2)

b which can therefore be extracted in the ith channel use. The same follows
for user b. A block diagram visualizing the strategy is depicted in Figure 5.2 (a). Note
that the operators are modulo-2 additions and a delay element D delays the corresponding
input signal by one block.
However, the above strategy is not unique and in the following we describe another block
transmission strategy, where the users transmit the modulo-2 sum of two message bits.
This is similar to the concept of transmitting “anti-packets” [23] in order to cancel packets
at the physical layer that “flow” in the wrong direction due to the broadcast nature of the
network. However, in our case these anti-packets do not increase the throughput of the
network, but lead to simple closed form expressions of the received signals at the relay
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nodes and therefore simplify the description. In particular the users transmit

X(i)
a = u(i)

a ⊕ u(i−2)
a (5.7)

X
(i)
b = u

(i)
b ⊕ u

(i−2)
b , (5.8)

where u(i)
a = 0 and u(i)

b = 0 for i < 1, and the relays broadcast the received signal in the
next channel use according to

X(i)
r1 = Y (i−1)

r1 (5.9)

X(i)
r2 = Y (i−1)

r2 , (5.10)

where X(1)
r1

def.= 0 and X
(1)
r2

def.= 0 as before. For this strategy, the received signals at the
two relays are given by

Y (i)
r1 = u(i)

a ⊕ u
(i−1)
b (5.11)

Y (i)
r2 = u(i−1)

a ⊕ u(i)
b , (5.12)

which can be shown by induction over i and will be described in the following for the first
relay r1. For i = 1 we have Y (1)

r1 = X
(1)
a ⊕X(1)

r2 = u
(1)
a , because X(1)

r2 = 0 and u(−1)
a = 0.

For i = 2 we have Y (2)
r1 = X

(2)
a ⊕ X(2)

r2 = u
(2)
a ⊕ u(1)

b , because X(1)
r1 = 0, u(0)

a = 0, and
u

(−1)
b = 0. Finally, for i = l + 1 we have

Y (l+1)
r1 = X(l+1)

a ⊕X(l+1)
r2

= u(l+1)
a ⊕ u(l−1)

a ⊕ Y (l)
r2

= u(l+1)
a ⊕ u(l−1)

a ⊕X(l)
r1 ⊕X

(l)
b

= u(l+1)
a ⊕ u(l−1)

a ⊕ Y (l−1)
r1 ⊕ u(l)

b ⊕ u
(l−2)
b

= u(l+1)
a ⊕ u(l)

b , (5.13)

where the last equation follows by inductive assumption (cp. equation (5.11)) and thus the
claim is established for r1. The steps for the second relay r2 are similar. With this strategy,
a user can extract the information bit of the other user by computing Y (i)

a ⊕ u(i−1)
a and

Y
(i)
b ⊕ u

(i−1)
b respectively. The strategy is visualized as a block diagram in Figure 5.2 (b).

It can be seen that both strategies allow the users to successfully extract the information
bits of the other user and thus a rate of up to 1 bit per channel use can be approached
simultaneously for each user for M → ∞. Moreover, from the block diagrams we obtain
the following picture: After two initial blocks of transmission the network reaches a steady
state where both information flows pass through the relays without influencing each other.
Effectively, it looks as though user a directly sees the packet stream of user b (delayed by
two channel uses) and vice versa.
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5.1.2. Binary Symmetric Channel

Now we consider the case where binary noise is added (modulo 2) at each receiving node.
Thus the channel is modeled by the following equations

Ya = Xr1 ⊕ Za (5.14a)

Yr1 = Xa ⊕Xr2 ⊕ Zr1 (5.14b)

Yr2 = Xr1 ⊕Xb ⊕ Zr2 (5.14c)

Yb = Xr2 ⊕ Za, (5.14d)

where Za, Zr1 , Zr2 , Za are independent binary random variables and the crossover proba-
bilities Pr({Za = 1}), Pr({Zr1 = 1}), Pr({Zr2 = 1}), and Pr({Zb = 1}) are denoted by
εa, εr1 , εr2 , and εb respectively. The cut-set region for this (binary symmetric) channel is
given by

RBSC
cut =

(Ra, Rb) :
0 < Ra < min (1−H(εr1), 1−H(εr2), 1−H(εb))
0 < Rb < min (1−H(εr2), 1−H(εr1), 1−H(εa))

 , (5.15)

where H( · ) is the binary entropy function [9]. In order to show achievability of (5.15),
consider the following two linear binary codes Ca and Cb of dimension n:

Ca =

c = uG = (u′,u′′)

G′

G′′

 = u′G′ ⊕ u′′G′′ : u ∈ {0, 1}nRa

 (5.16)

and

Cb =

c = uG = (u′,0)

G′

G′′

 = u′G′ : u′ ∈ {0, 1}nRb

 , (5.17)

where u′′ has length n(Ra−Rb) and G is a generator matrix4 of dimension nRa×n which
can also be written as a “stacked” generator matrix using G′ and G′′ whose dimensions are
nRb × n and n(Ra −Rb)× n. We use the same variables in (5.16) and (5.17) to make the
connection between the codes more apparent. From the code construction the following
observations can be made:

• (Ca, Cb) are nested codes Cb ⊆ Ca, i.e. each codeword in Cb is also in Ca. This means
that Ca and Cb share the same generating subspace [5]. Moreover, it follows that the
(componentwise) modulo-2 sum of any codeword in Ca and any codeword in Cb is
itself a valid codeword in Ca.

4It is also possible to characterize these codes with parity-check matrices, see [41].
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• In the context of communication networks, Ca is a code with “multiple interpreta-
tions” [42]. The idea here is that the code Ca can have different effective rates (in
this case either Ra or Rb) based on the SI that is available at a decoding receiver. In
particular, a receiver that knows the information sequence corresponding to u′ as SI
is able to decode with respect to Cb and Ca. A receiver with no SI can only decode
with respect to Ca.

We now divide the total number of channel uses into M + 2 successive blocks of n channel
uses and use an upper index to refer to each block, i.e. user a receives the signal Y (i)

a =
X(i)

r1 ⊕Z(i)
a of length n in the ith block and so on.

Encoding at the Users

User a transmits M binary information vectors u
(1)
a , . . . ,u

(M)
a , where each vector has

length nRa, i.e. in total MnRa bits are transmitted to user b. Similarly user b transmits
M binary information vectors u′b

(1), . . . ,u′b
(M), where each vector has length nRb, i.e. in

total MnRb bits are transmitted to user a. It is assumed without loss of generality that
Rb ≤ Ra and the zero-padded information vectors of user b (to length nRa) are denoted
by u

(1)
b , . . . ,u

(M)
b . The effective rates are slightly lower than Ra and Rb because the whole

message exchange takes n(M + 2) channel uses. However, by choosing M large enough,
the rates Ra and Rb can be approached as closely as desired.
User a maps the information vectors in each transmission block to codewords in Ca and
transmits

X(i)
a = c(i)

a ⊕ c(i−2)
a = u(i)

a G⊕ u(i−2)
a G =

(
u(i)
a ⊕ u(i−2)

a

)
G, (5.18)

where u
(i)
a = 0 for i < 1. It can be seen that X(i)

a ∈ Ca, i.e. the transmitted signal
is itself a codeword. Moreover, it can be seen that from the distributive property of
matrix multiplication it follows that it is equivalent to compute the componentwise XOR
of two codewords or to perform the componentwise XOR of the corresponding information
vectors [42], i.e. user a effectively performs NC.
Similarly, user b maps the information vectors in each block to codewords by using the
code Cb and transmits

X
(i)
b = c

(i)
b ⊕ c

(i−2)
b = u′b

(i)
G′ ⊕ u′b

(i−2)
G′ =

(
u′b

(i) ⊕ u′b
(i−2)

)
G′, (5.19)

where u′b
(i) = 0 for i < 1. Note that X

(i)
b ∈ Cb and moreover, because Cb is nested in Ca,

the transmitted signal of user b is also a valid codeword in Ca and can also be written as

X
(i)
b =

(
ub

(i) ⊕ ub
(i−2)

)
G. (5.20)
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From this encoding process it follows that the componentwise XOR of two transmitted
signals (independent of any particular transmission block) is a valid codeword in Ca.

Relaying Strategy

Both relays r1 and r2 perform ML decoding in each block with respect to the code Ca. For
a binary symmetric channel, ML decoding amounts to finding the codeword that is closest
to the received vector in terms of Hamming-distance [43]. Also note that for a linear code,
the decoding decision only depends on the noise and not on the codeword. Therefore, ML
decoding is equivalent to finding the ML estimate of the noise vector [43]. Since the relays
are not interested in the particular messages of the users (or a linear combination thereof),
the relays don’t reverse the encoding operation, but rather compute the componentwise
XOR of the ML estimate of the noise and the received signal. This can also be regarded as
a quantization operation with respect to Ca and will be denoted by QCa( · ), analogous to
the nearest neighbor lattice quantizer. The relays then simply broadcast the “quantized”
signal in the next block, i.e.

• the relay r1 broadcasts X(i)
r1 = QCa(Y (i−1)

r1 ) = Y (i−1)
r1 ⊕ Ẑ

(i−1)
r1 and

• the relay r2 broadcasts X(i)
r2 = QCa(Y (i−1)

r2 ) = Y (i−1)
r2 ⊕ Ẑ

(i−1)
r2 ,

where Ẑr1 and Ẑr2 denote the (ML) estimate of the binary noise vector for r1 and r2,
respectively. Note that if all intermediate decoding steps in each block are successful, i.e.
Ẑ

(i)
r1 = Z(i)

r1 and Ẑ
(i)
r2 = Z(i)

r2 holds for all i, we have

QCa(Y (i)
r1 ) = c(i)

a ⊕ c
(i−1)
b (5.21)

QCa(Y (i)
r2 ) = c(i−1)

a ⊕ c
(i)
b , (5.22)

which can be shown by induction over i in a similar way as was done for the noiseless case.
This means that each relay broadcasts the componentwise XOR of two user codewords,
which is itself a codeword in Ca, provided that all preceding decoding steps are successful.

Decoding at the Users

Assuming that the relays perform error-free decoding, in the ith transmission block the
users receive

Y (i)
a = X(i)

r1 ⊕Z(i)
a = QCa(Y (i−1)

r1 )⊕Z(i)
a = c(i−1)

a ⊕ c
(i−2)
b ⊕Z(i)

a (5.23)

Y
(i)
b = X(i)

r2 ⊕Z
(i)
b = QCa(Y (i−1)

r2 )⊕Z
(i)
b = c(i−2)

a ⊕ c
(i−1)
b ⊕Z

(i)
b (5.24)
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and compute

QCb
(Y (i)

a ⊕ c(i−1)
a ) = QCb

(c(i−2)
b ⊕Z(i)

a ) (5.25)

QCa(Y (i)
b ⊕ c

(i−1)
b ) = QCa(c(i−2)

a ⊕Z(i)
a ) (5.26)

in order to recover the codeword (and therefore the information vector) of the respective
other user. Note that user a is able to decode with respect to the code Cb in equation
(5.25) because there is sufficient SI available. It is crucial to observe that user b could
compute QCa(Y (i)

b ) and extract the codeword c
(i−2)
a from the decoded linear superposition

of two codewords, i.e. from c
(i−2)
a ⊕c

(i−1)
b , while this is not the case for user a. Computing

QCb
(Y (i)

a ) would fail because Y (i)
a is a “noisy” codeword in Ca but not necessarily Cb.

However, computing QCa(Y (i)
a ) would work, but does not lead to the desired rate region,

because this would put a rate constraint on Ra and not on Rb.

Achievability of the Cut-set Region

The overall probability of error pe (for the message exchange) can be bounded by the sum
over the decoding error probabilities in each block for all devices. Each relay decodes (or
quantizes) M + 2 times and each user M times. Therefore

pe ≤ (4M + 2) Pr({Ẑ 6= Z}) (5.27)

where Pr({Ẑ 6= Z}) denotes the probability that any of the decoding steps fails5. Note
that because of the symmetry of linear codes, the error probability does not depend on
the particular codeword that is sent. Achievability of the cut-set region in the sense of
vanishing pe follows from the fact that there exist nested linear codes (Ca, Cb) such that
each code is a good channel code for a BSC [41], i.e. Pr({Ẑ 6= Z}) can be made as small
as desired by increasing n. Note that both relays and user b decode with respect to Ca
and therefore the probability of decoding error in each block for these nodes can be made
arbitrarily small as long as

Ra < min (1−H(εr1), 1−H(εr2), 1−H(εb)) . (5.28)

User a decodes with respect to Cb and therefore the probability of decoding error in each
block for user a can be made arbitrarily small as long as

Rb < 1−H(εa). (5.29)

5If the decoding error probability is different for the two codes, then Pr({Ẑ 6= Z}) is the probability of
decoding error for the worse code and serves as an upper bound on the decoding error probability for
both codes.
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Recall that Rb ≤ Ra and therefore the inequality (5.28) also holds for Rb if it holds for Ra.
It can then be seen that the achievable rate region implied by (5.29) and (5.28) is identical
to the cut-set region (5.15) if 1−H(εb) ≥ 1−H(εa), and for 1−H(εb) < 1−H(εa) we can
just relabel the users.

5.2. Gaussian Channel

In the preceding section we described a block transmission strategy and derived the capac-
ity region of the sTTRC assuming a (binary symmetric) finite field physical layer. In this
section the methods and insights gained from this analysis are applied to the Gaussian case
of the sTTRC. The notation and most of the definitions regarding the sTRC introduced
in chapter 2 are also valid for this network and only the differences are pointed out here.
The channel is modeled by the following equations

Ya = Xr1 + Za (5.30a)

Yr1 = Xa +Xr2 + Zr1 (5.30b)

Yr2 = Xr1 +Xb + Zr2 (5.30c)

Yb = Xr2 + Za, (5.30d)

where Za, Zr1 , Zr2 and Zb are assumed to be i.i.d. Gaussian random variables with zero
mean and variance σ2

a, σ2
r1 , σ

2
r2 and σ2

b respectively. All transmit signals are average power
constrained to P (cp. equation (2.2)). Note that this is equivalent to the case where all
noise variables have unit variance and the input signals are scaled by channel coefficients
hr1a, har1 , hr2r1 , hr1r2 , hbr2 , and hr2b with the additional constraint that har1 = hr2r1

and hr1r2 = hbr2 . However, in this section the notation without channel coefficients6 is
used for convenience. Also note that this is not the general case of the Gaussian sTTRC
where unequal power constraints at the device nodes have to be taken into account (or
equivalently the equality constraints are removed when channel coefficients are used). In
the last section of this chapter we propose two ideas that might be useful in order to fully
extend the derived results to the general case.

5.2.1. Cut-set Bound

The cut-set region of the Gaussian sTTRC is given by

Rcut =

(Ra, Rb) :
0 < Ra < min

(
C
(
P/σ2

r1

)
,C
(
P/σ2

r2

)
,C
(
P/σ2

b

))
0 < Rb < min

(
C
(
P/σ2

r2

)
,C
(
P/σ2

r1

)
,C
(
P/σ2

a

))  , (5.31)

6More precisely, all channel coefficients are assumed to be 1.
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where C (x) def.= log2(1 +x)/2. This region follows from the cut-set bound [9] and applying
similar arguments as presented in [14] for the sTRC.

5.2.2. An Achievable Rate Region

The main result of this section is given in form of the following theorem.

Theorem 2. For the Gaussian sTTRC defined above, one can achieve all positive rate
pairs (Ra, Rb) satisfying:

0 < Ra < min
(
C̃
(
P/σ2

r1

)
, C̃
(
P/σ2

r2

)
,C
(
P/σ2

b

))
(5.32)

0 < Rb < min
(
C̃
(
P/σ2

r2

)
, C̃
(
P/σ2

r1

)
,C
(
P/σ2

a

))
, (5.33)

where C (x) def.= log2(1 + x)/2 and C̃ (x) def.= log2(1/2 + x)/2.

Note that the achievable rate region implied by (5.32) and (5.33) is within 1/2 bit per
dimension of the cut-set region and thus the capacity region for each user. Moreover, the
gap to the cut-set region approaches zero for fixed noise variances and increasing node
power P .
In the remainder of this section we describe the transmission strategy that is used in order
to prove the theorem. In particular, we will show that the Gaussian sTTRC defined above
is conceptually very similar to the binary symmetric case by applying a so-called MLAN
conversion [31]. The continuous counterpart of (binary) nested linear codes are nested
Voronoi codes which are constructed using a lattice partition chain.

MLAN Conversion of the sTTRC

In the following, we describe how the Gaussian sTTRC can be converted to an MLAN
channel. This conversion makes the similarities to the (binary symmetric) finite field
physical layer apparent and also simplifies the analysis. The conversion is based on the
description contained in [31] and [44].
We assume that the channel is used in M + 2 consecutive blocks, where each block con-
tains n channel uses. Λ is an n-dimensional lattice which is simultaneously good and the
fundamental region of Λ has second moment σ2(Λ) = P . The transmitted signals of the
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nodes in the ith block are given by

X(i)
a = (X̃(i)

a + U (i)
a ) mod Λ (5.34)

X(i)
r1 = (X̃(i)

r1 + U (i)
r1 ) mod Λ (5.35)

X(i)
r2 = (X̃(i)

r2 + U (i)
r2 ) mod Λ (5.36)

X
(i)
b = (X̃(i)

b + U
(i)
b ) mod Λ, (5.37)

where X̃
(i)
a , X̃

(i)
r1 , X̃

(i)
r2 , X̃

(i)
b ∈ RV (Λ) are the inputs signals to the MLAN channel and

U (i)
a , U (i)

r1 , U (i)
r2 , U

(i)
b are random dither vectors. All dither vectors in each block are

uniformly distributed over RV (Λ) and known to all nodes. The crypto lemma (cp. section
3.1) ensures that the input signals to the MLAN channel and the transmitted signals of
the nodes are statistically independent. Moreover, the transmitted signals are uniformly
distributed over RV (Λ) and therefore the power constraint at all nodes is met.
Upon reception the nodes compute

Ỹ
(i)
a = (βY (i)

a −U (i)
r1 ) mod Λ (5.38)

Ỹ
(i)
r1 = (αY (i)

r1 −U (i)
a −U (i)

r2 ) mod Λ (5.39)

Ỹ
(i)
r2 = (αY (i)

r2 −U (i)
r1 −U

(i)
b ) mod Λ (5.40)

Ỹ
(i)
b = (βY

(i)
b −U (i)

r2 ) mod Λ, (5.41)

where Ỹ
(i)
a , Ỹ

(i)
r1 , Ỹ

(i)
r2 , Ỹ

(i)
b are the output signals of the MLAN channel in block i and

β and α are scaling factors for the MMSE estimation. For user a the output signal of the
MLAN channel can be written as

Ỹ
(i)
a = (βY (i)

a −U (i)
r1 ) mod Λ

= (β(X(i)
r1 + Z(i)

a )−U (i)
r1 ) mod Λ

(5.35)= ((X̃(i)
r1 + U (i)

r1 ) mod Λ−X(i)
r1

+ β(X(i)
r1 + Z(i)

a )−U (i)
r1 ) mod Λ

= (X̃(i)
r1 + (β − 1)X(i)

r1 + βZ(i)
a ) mod Λ

= (X̃(i)
r1 + Z̃

(i)
a ) mod Λ, (5.42)

where Z̃
(i)
a is the effective noise given by

Z̃
(i)
a = (β − 1)X(i)

r1 + βZ(i)
a . (5.43)

Recall that from the crypto lemma we have that X(i)
r1 is independent of X̃

(i)
r1 . Therefore

Z̃
(i)
a is also independent of X̃

(i)
r1 . Moreover, from the fact that X(i)

r1 is uniform over
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RV (Λ) and Λ is Poltyrev-good we have that Z̃
(i)
a is Gaussian in the limit [34]. We choose

β = P/(P + σ2
a) in order to minimize the effective noise power (see also Appendix A) and

obtain

σ̃2
a = 1

n
E
[
||Z̃(i)

a ||2
]

= Pσ2
a

P + σ2
a

. (5.44)

The steps for user b are similar, yielding

Ỹ
(i)
b = (X̃(i)

r2 + Z̃
(i)
b ) mod Λ, (5.45)

where Z
(i)
b is the effective noise at user b is independent of X̃

(i)
r2 , Gaussian in the limit,

and given by

Z̃
(i)
b = (β − 1)X(i)

r2 + βZ
(i)
b . (5.46)

The effective noise power is

σ̃2
b = 1

n
E
[
||Z̃(i)

b ||2
]

= Pσ2
b

P + σ2
b

. (5.47)

for the same choice of β as for user a. For the first relay r1 the output vector of the MLAN
channel Ỹ

(i)
r1 can be written as

Ỹ
(i)
r1 = (αY (i)

r1 −U (i)
a −U (i)

r2 ) mod Λ

= (α(X(i)
a + X(i)

r2 + Z(i)
r1 )−U (i)

a −U (i)
r2 ) mod Λ

(5.34)
(5.36)= ((X̃(i)

a + U (i)
a ) mod Λ−X(i)

a

+ (X̃(i)
r2 + U (i)

r2 ) mod Λ−X(i)
r2

+ α(X(i)
a + X(i)

r2 + Z(i)
r1 )−U (i)

a −U (i)
r2 ) mod Λ

= (X̃(i)
a + X̃

(i)
r2 + (α− 1)(X(i)

a + X(i)
r2 ) + αZ(i)

r1 ) mod Λ

= (X̃(i)
a + X̃

(i)
r2 + Z̃

(i)
r1 ) mod Λ, (5.48)

where Z̃r1 is the effective noise given by

Z̃
(i)
r1 = (α− 1)(X(i)

a + X(i)
r2 ) + αZ(i)

r1 . (5.49)

Note that (5.48) reflects the interference at the relay r1. It can be seen that because of this
interference the effective noise term is different from the effective noise term at the users –
in particular, we have two self-noise terms whereas at the users only one self-noise term is
present. However, by the crypto lemma both self-noise terms are statistically independent
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of the input signals and therefore Z̃
(i)
r1 is also independent of X̃

(i)
a and X̃

(i)
r2 . Here we

choose α = 2P/(2P + σ2
r1) in order to minimize the effective noise power, which is then

given by

σ̃2
r1 = 1

n
E
[
||Z̃r1 ||2

]
=

2Pσ2
r1

2P + σ2
r1

. (5.50)

The steps for the second relay r2 are similar, yielding

Ỹ
(i)
r2 = (X̃(i)

r1 + X̃
(i)
b + Z̃

(i)
r2 ) mod Λ, (5.51)

where the effective noise Z̃
(i)
r2 is independent of X̃

(i)
r1 and X̃

(i)
b and given by

Z̃
(i)
r2 = (α− 1)(X(i)

r1 + X
(i)
b ) + αZ(i)

r2 . (5.52)

For the same choice of α as for r1 the second moment of the effective noise is

σ̃2
r2 = 1

n
E
[
||Z̃r2 ||2

]
=

2Pσ2
r2

2P + σ2
r2

. (5.53)

Again, Z̃
(i)
r1 and Z̃

(i)
r2 can be well approximated by a Gaussian random vector with the

same variance and the approximation becomes exact as n→∞.

In summary, the equivalent MLAN channel of the Gaussian sTTRC is given by

Ỹ
(i)
a = (X̃(i)

r1 + Z̃
(i)
a ) mod Λ (5.54)

Ỹ
(i)
r1 = (X̃(i)

a + X̃
(i)
r2 + Z̃

(i)
r1 ) mod Λ (5.55)

Ỹ
(i)
r2 = (X̃(i)

r1 + X̃
(i)
b + Z̃

(i)
r2 ) mod Λ (5.56)

Ỹ
(i)
b = (X̃(i)

r2 + Z̃
(i)
b ) mod Λ (5.57)

where X̃
(i)
a , X̃

(i)
b , X̃

(i)
r1 , X̃

(i)
r2 ∈ RV (Λ) are the input signals to the channel in block i

and the second moment of the effective noise Z̃
(i)
a , Z̃

(i)
r1 , Z̃

(i)
r2 , and Z̃

(i)
b is denoted by

σ̃2
a, σ̃2

r1 , σ̃
2
r2 , and σ̃

2
b respectively. The noise is statistically independent of the input

signals and approaches a Gaussian distribution for n → ∞, i.e. the noise vectors are
Gaussian in the limit.

We now describe the proposed coding scheme that is applied to this MLAN channel.

Encoding at the Users

A conceptual visualization of our encoding scheme (i.e. the involved lattices and codes)
is depicted in Figure 5.3, which will be explained in the following. We consider a lattice
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Figure 5.3.: Conceptual visualization of a lattice partition chain Λa/Λb/Λ and the corresponding
Voronoi codes. The Voronoi regions of Λb are not shown.

partition chain Λa/Λb/Λ, i.e. Λa ⊇ Λb ⊃ Λ, where Λa and Λb serve as coding lattices and
Λ is the shaping lattice. In the following, we assume that all lattices are simultaneously
good. The existence of lattice partition chains where all lattices are simultaneously good
is proved in [36]. From the partition chain we obtain the following two Voronoi codes7

Ca
def.= C(Λa/Λ) (5.58)

Cb
def.= C(Λb/Λ), (5.59)

which are nested, i.e. Cb ⊆ Ca. The number of codewords in Ca is given by

|Ca| =
Vol(Λ)
Vol(Λa)

= 2nRa (5.60)

and we assume a one-to-one mapping between a particular message vector W (i)
a ∈ {0, 1}nRa

and a lattice codeword in each block which is denoted by V (i)
a for user a. Similarly the

7In the following we will use the original term “Voronoi codes” instead of “nested lattice codes” because
in our case the codes are nested as well.
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number of codewords in Cb is given by

|Cb| =
Vol(Λ)
Vol(Λb)

= 2nRb (5.61)

and user b maps the message W
(i)
b ∈ {0, 1}nRb to a codeword V

(i)
b in each block.

Based on the intuition gained from the finite field model, the input signals to the MLAN
channel in block i for both users are given by

X̃
(i)
a = (V (i)

a − V (i−2)
a ) mod Λ (5.62)

X̃
(i)
b = (V (i)

b − V
(i−2)
b ) mod Λ, (5.63)

where V (i)
a

def.= 0 and V
(i)
b

def.= 0 for i < 1. Note that X̃
(i)
a ∈ Ca and X̃

(i)
b ∈ Cb ⊆ Ca, i.e.

both users transmit valid codeword in Ca.

Relaying Strategy

The relays perform lattice decoding with respect to the coding lattice Λa, i.e. the relays
find the closest lattice point to the received signal in Λa. This can also be regarded as
a quantization operation because the relays don’t recover individual user messages. The
quantized signals (modulo Λ) are simply forwarded in the next block according to

X̃
(i)
r1 = QΛa(Ỹ (i−1)

r1 ) mod Λ = QΛa(X̃(i−1)
a + X̃

(i−1)
r2 + Z̃

(i−1)
r1 ) mod Λ (5.64)

X̃
(i)
r2 = QΛa(Ỹ (i−1)

r2 ) mod Λ = QΛa(X̃(i−1)
r1 + X̃

(i−1)
b + Z̃

(i−1)
r2 ) mod Λ, (5.65)

where we used the fact that

QΛa(x) mod Λ = QΛa(x mod Λ) mod Λ (5.66)

for any x ∈ Rn if Λa ⊃ Λ [45]. By convention, in the first block the input signals to the
MLAN channel8 are given by X̃

(1)
r1 = X̃

(1)
r2

def.= 0.
From the above definitions and the encoding process at the users, it follows that X̃

(i)
a +X̃

(i)
r2

as well as X̃
(i)
r1 + X̃

(i)
b are lattice points in Λa for each block. Therefore, decoding at the

relays is successful in block i if

QΛa(Ỹ (i)
r1 ) mod Λ = (X̃(i)

a + X̃
(i)
r2 ) mod Λ (5.67)

QΛa(Ỹ (i)
r2 ) mod Λ = (X̃(i)

r1 + X̃
(i)
b ) mod Λ (5.68)

8Note that this does not imply that the relays remain silent in the first block, but rather only transmit
random dithers.
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holds, which is the case when the effective noise remains inside the fundamental Voronoi
region of Λa. The probability of decoding error at the relays vanishes for n → ∞ if
σ2(Λa) < σ̃2

r1 and σ2(Λa) < σ̃2
r2 by the virtue of Λa being Poltyrev-good. Then, for the

first relay we have that for successful decoding the rate Ra must satisfy

Ra <
1
2 log2

(
σ2(Λ)
σ̃2
r1

)
= 1

2 log2

 P
2Pσ2

r1
2P+σ2

r1

 = 1
2 log2

(
1
2 + P

σ2
r1

)
. (5.69)

Similarly for the second relay we obtain

Ra <
1
2 log2

(
σ2(Λ)
σ̃2
r2

)
= 1

2 log2

(
1
2 + P

σ2
r2

)
. (5.70)

By code construction we assumed that Ra ≤ Rb and in summary we have the following
conditions for vanishing error probabilities at the relays:

Rb ≤ Ra < min
(
C̃
(
P/σ2

r1

)
, C̃
(
P/σ2

r2

))
. (5.71)

Decoding at the Users

Before describing the decoding steps at the users, first we state the following lemma.

Lemma 4. Assuming that all decoding steps at the relays are successful up to (and in-
cluding) block i, the quantized signals at the relays in block i can be written as

QΛa(Ỹ (i)
r1 ) mod Λ = (V (i)

a + V
(i−1)
b ) mod Λ (5.72)

QΛa(Ỹ (i)
r2 ) mod Λ = (V (i−1)

a + V
(i)
b ) mod Λ (5.73)

Proof. The lemma is proved by induction over i. Only the steps for user a are shown.
For i = 1 we have

QΛa(Ỹ (1)
r1 ) mod Λ = (X̃(1)

a + X̃
(1)
r2 ) mod Λ = (V (1)

a − V (−1)
a ) mod Λ = V (1)

a , (5.74)

where we used the assumption that X̃
(1)
r2

def.= 0 and V (i)
a

def.= 0 for i < 1. For i = 2 we have

QΛa(Ỹ (2)
r1 ) mod Λ = (X̃(2)

a + X̃
(2)
r2 ) mod Λ

= ((V (2)
a − V (0)

a ) mod Λ +QΛa(Y (1)
r2 ) mod Λ) mod Λ

= (V (2)
a + (X̃(1)

r1 + X̃
(1)
b ) mod Λ) mod Λ

= (V (2)
a + (V (1)

b − V
(−1)
b ) mod Λ) mod Λ

= (V (2)
a + V

(1)
b ) mod Λ, (5.75)
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where we used the assumption that X̃
(1)
r1

def.= 0 and V
(i)
b

def.= 0 for i < 1. Finally for i = l+1
we have

QΛa(Ỹ (l+1)
r1 ) mod Λ = (X̃(l+1)

a + X̃
(l+1)
r2 ) mod Λ

= (V (l+1)
a − V (l−1)

a +QΛa(Y (l)
r2 )) mod Λ

= (V (l+1)
a − V (l−1)

a + X̃
(l)
r1 + X̃

(l)
b ) mod Λ

= (V (l+1)
a − V (l−1)

a +QΛa(Ỹ (l−1)
r1 ) + V

(l)
b − V

(l−2)
b ) mod Λ

= (V (l+1)
a + V

(l)
b ) mod Λ (5.76)

where the last step follows by inductive assumption (cp. equation (5.72)). The steps for
the second relay are similar.

From (5.72) and (5.73) it follows that in each block the relays broadcast a linear combi-
nation of two user codewords according to

X̃
(i)
r1 = (V (i−1)

a + V
(i−2)
b ) mod Λ (5.77)

X̃
(i)
r2 = (V (i−2)

a + V
(i−1)
b ) mod Λ, (5.78)

assuming that the relays decode successfully. In block i user b tries to recover the codeword
of user a, V (i−2)

a , by first subtracting V
(i−1)
b , which is the transmitted codeword in the

preceding block, and then quantizing the resulting signal with respect to Λa. Hence for
user b the decoding process is similar to the decoding process at the relays. If we assume
that all decoding steps at the relays are successful, then the estimate is given by

V̂
(i−2)
a = QΛa(Ỹ (i)

b − V
(i−1)
b ) mod Λ (5.79)

= QΛa(X̃(i)
r2 + Z̃

(i)
b − V

(i−1)
b ) mod Λ (5.80)

= QΛa(V (i−2)
a + V

(i−1)
b + Z̃

(i)
b − V

(i−1)
b ) mod Λ (5.81)

= QΛa(V (i−2)
a + Z̃

(i)
b ) mod Λ. (5.82)

The error probability at user b vanishes for n → ∞ if σ2(Λa) < σ̃2
b . Therefore the code

rate of Ca has to satisfy

Ra <
1
2 log2

(
σ2(Λ)
σ̃2
b

)
= 1

2 log2

 P
Pσ2

b

P+σ2
b

 = 1
2 log2

(
1 + P

σ2
b

)
. (5.83)

From V (i−2)
a the second user can obtain the message by inverting the one-to-one mapping

between message vectors and codewords. For user a the estimate of the codeword is given
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by

V̂
(i−2)
b = QΛb

(Ỹ (i)
a − V (i−1)

a ) mod Λ (5.84)

= QΛb
(X̃(i)

r1 + Z̃
(i)
a − V (i−1)

a ) mod Λ (5.85)

= QΛb
(V (i−1)

a + V
(i−2)
b + Z̃

(i)
a − V (i−1)

a ) mod Λ (5.86)

= QΛb
(V (i−2)

b + Z̃
(i)
a ) mod Λ. (5.87)

Note that lattice decoding at user a is with respect to Λb. The error probability vanishes
for n → ∞ if σ2(Λb) < σ̃2

b , because Λb is also assumed to be Poltyrev-good. Therefore,
the message of user b can approach any rate up to

Rb <
1
2 log2

(
σ2(Λ)
σ̃2
a

)
= 1

2 log2

 P
Pσ2

a
P+σ2

a

 = 1
2 log2

(
1 + P

σ2
a

)
. (5.88)

Note that user b could just quantize Ỹ
(i)
b without subtracting V

(i−1)
b . From the quantized

signal the codeword of the other user could be extracted by employing SI after lattice
decoding. User a could, in principle, proceed in a similar way as user b and first quantize
the received signal with respect to Λa and then apply SI to extract the message. This
would however put an additional constraint on the rate Ra. Therefore, for user a it is
crucial to employ SI prior to lattice decoding which is then performed with respect to
Λb. A complete block diagram visualizing the relationships between the input and output
signals of the MLAN channel is depicted in Figure 5.4.
In summary, this transmission strategy can approach any rate pairs (Ra, Rb) satisfying

Ra < min
(
C̃
(
P/σ2

r1

)
, C̃
(
P/σ2

r2

)
,C
(
P/σ2

b

))
(5.89)

Rb < C
(
P/σ2

a

)
(5.90)

while making the error probability as small as desired. These constraints are identical
to the constraints stated in the theorem if C

(
P/σ2

b

)
≥ C

(
P/σ2

a

)
. For the case where

C
(
P/σ2

b

)
< C

(
P/σ2

a

)
we relabel the users. This proves the theorem.

5.3. Discussion

The preceding analysis shows that there are striking similarities between the finite field
physical layer and the Gaussian model assuming equal power constraints at the nodes. The
key in order to make these similarities apparent is the MLAN conversion – a technique
that was originally proposed in [31] for point-to-point channels and extended in [44] to

65



Chapter 5. The Separated Two-Way Two-Relay Channel

user a relay r1 relay r2 user b

V
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a

V̂
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b V
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mod Λ

D
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(i)
r1

QΛa

mod Λ

D

Z̃
(i)
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mod Λ
−

−
mod Λ QΛb

Z̃
(i)
a

D D

mod Λ
−

−
mod ΛQΛa

Z̃
(i)
b

Figure 5.4.: Block diagram of the transmission strategy for the MLAN converted Gaussian
sTTRC.

multi-access channels. The use of structured codes for the sTTRC – nested linear codes for
the binary symmetric case and nested Voronoi codes for the Gaussian case – is necessary in
order to exploit the linearity of the channel models. Note that for a point-to-point MLAN
channel a capacity-achieving code can be constructed simply by choosing the codewords at
random according to a uniform distribution over the fundamental Voronoi region of Λ [31].
A random code for the sTTRC, however, is unsuited for PNC because it lacks structure
and therefore would not allow the relays to “protect” linear combinations of codewords.
In this chapter we assumed that the nodes have FD capability, mainly in order to simplify
the analysis. This assumption is commonly not fulfilled in practice and therefore we
briefly illustrate how the techniques developed here may be applied to the case with HD
constrained device nodes and we also point out an important caveat that should be kept
in mind regarding practical applications. In Figure 5.5 two modes (or network states) are
depicted for the sTTRC. During mode 1 only user a and the second relay r2 transmit
while the other nodes receive and therefore remain silent. During mode 2 the situation
reverses and user a and the first relay r1 transmit. For a complete message exchange one
would then alternate between these two modes and each “mode cycle” corresponds to a
transmission block. An important point to observe here is the fact that one would have
to make sure that the users are sufficiently separated, even for HD nodes. Recall that
for the sTRC with only one relay and HD nodes the assumption of separation between
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a r1 r2 b

a r1 r2 b

1. mode

2. mode

broadcast

broadcast

interference

interference

Figure 5.5.: Possible transmission modes for HD constrained device nodes.

the users is not necessary when using a two-phase protocol, i.e. the separation is implied
(and therefore perfectly fulfilled in practice) due to the protocol. For a practical setup
corresponding to the sTTRC however, the separation is not implied by the protocol (i.e.
the transmit signal of a user may interfere with the transmit signal of a relay at the other
user) and it is obvious that physical separation for wireless nodes may only be fulfilled
approximately in practice.
Finally, we would like to address two ideas that might be useful in order to extend the
derived results to the general Gaussian sTTRC with unequal power constraints at the relay
nodes. One possible strategy is to use superposition coding, similar to the strategy that was
used in the proof in section 3.4. However, we conjecture that it is not possible to achieve a
constant gap to the upper bound based on a straightforward application of superposition
coding in combination with the block transmission protocol. As an example, consider the
case where the power constraints for the device nodes are given by Pa, Pr1 = cP , Pr2 ,
Pb = P , and the noise variances by σ2

a = c, σ2
r1 = 0, σ2

b = 1, σ2
b = 0 for c > 1. One

can check that for these configuration the cut-set region is given by all positive rate pairs
(Ra, Rb) for which Ra < C (cP ) and Rb < C (P ). The parameters are chosen such that it
can be assumed that any transmission to r1 and to user b happens instantaneously and
without error because zero noise implies unlimited capacity independent of the transmit
power (i.e. the available power at user a and the second relay r2 is irrelevant here). Assume
now that in the first transmission block r1 transmits the message of user a to r2 while at
the same time b also transmits its message. For unequal rates we can use the rate splitting
approach, i.e. r1 splits the message of user a into two parts, one common-rate message
with rate Rb which is encoded with a nested lattice code and one extra message with rate
R′′a which is encoded with a Gaussian codebook. User b encodes its message with the same
nested lattice code. If we require the lattice codewords to be aligned, then we allocate a
fraction of the available power of at r1, in this case P , to the lattice, and the rest (c− 1)P
to the Gaussian codeword. The relay r2 uses successive cancellation and lattice decoding
and therefore receives the extra message of user a and a combination of the common-rate
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message of user a and the message of user b. This information is instantaneously available
also at r1 and b and consequently (because sufficient SI is available) b has the message of
user a and r1 has the message of user b. However, in the second block r1 has to convey
the message of user b to user a while at the same time transmitting a new message from
user a to r2 as before. If we proceed in a straightforward manner, the relay r1 encodes
the message of user b also with the nested lattice code and adds the resulting codeword
to the codeword corresponding to the new common-rate message of user a (modulo the
coarse lattice). The problem is that, because only a fraction of the available power at
r1 is allocated to the lattice, lattice decoding at user a is only successful (the Gaussian
codeword can be stripped off, because the message is known) if Rb < C (P/c) which can be
arbitrarily far away from the cut-set bound C (P ) by increasing c. Therefore this approach
is unsuited to show achievability of the upper bound to within a constant gap. It may still
be possible to use different coding approaches that are partially based on superposition
coding for different channel parameters but the analysis for this approach may be infeasible
because the parameter space is quite large. Another strategy would be to use different
shaping lattices similar to the approach outlined in [7] for the sTRC. Further investigation
of this approach for the sTTRC might be an interesting topic for future work.
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CHAPTER 6

Conclusion

In this thesis we studied the bidirectional message exchange of two users via relay nodes.
In particular we considered the separated two-way relay channel (sTRC) and the separated
two-way two-relay channel (sTTRC).
For the Gaussian case of the sTRC, we described and compared three relaying strategies:
amplify-and-forward (AF), decode-and-forward (DF), and modulo-and-forward (MF). AF
and DF are standard relaying approaches that find application in a variety of relay net-
work setups [46]. The sum rate comparison revealed that both strategies are capable of
providing near-optimal (in the case of AF) and optimal performance (in the case of DF)
for some channel configurations, but are suboptimal in general. The particular shortcom-
ing of DF, namely the multiplexing loss, stems from the fact that the relay attempts to
decode individual user messages, while this is not necessarily required. The main idea
to avoid this loss is to exploit the additive nature of the wireless channel with the help
of structured codes, in particular Voronoi codes or nested lattice codes. We provided a
detailed description of the MF strategy which is partially based on AF, because the relay
broadcasts a noisy version of the received signal, and partially on the structured code
approach, because the fundamental region of a coarse lattice is used to shape the signal.
The scheme was also generalized by introducing a second power allocation factor at user
a and we applied MF to the general case of the Gaussian sTRC with no constraint on
the downlink SNR. A brief example revealed that by optimizing the introduced power
allocation factor improvements in terms of sum rate may be achieved. It was also pointed
out that the comparison presented here was not meant to be exhaustive. The list of po-
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tential relaying strategies that have been proposed for this network model is quite long
(see e.g. [18] and [16]) and in general, different techniques are superior for different chan-
nel conditions. From an information-theoretic viewpoint it is desirable to find strategies
that are good enough to show achievability of upper bounds. Therefore, we also provided
a proof based on nested lattice codes showing that the capacity region of the Gaussian
sTRC is achievable to within 1/2 bit per dimension for each user for arbitrary channel
conditions – a result that was also recently published in [7]. However, for the uplink we
used superposition coding instead of two different shaping lattices. Even though our ap-
proach is good enough to show achievability of the capacity region to within a constant
gap, we acknowledge that it is inferior to the approach presented in [7], in the sense that
the gap to capacity vanishes only for one user for increasing uplink SNR, while in [7] the
gap vanishes for both users.
After that, we studied the sTTRC. This network can be seen as a multi-hop extension
of the sTRC where the users exchange their messages via two relays. First, a finite field
physical layer was considered and it was shown that for both the noiseless case and for
the binary symmetric case the cut-set bound is achievable. For the binary symmetric case
the capacity-achieving coding strategy is based on nested linear codes. The linearity of
the code is used to exploit the linearity of the assumed channel model such that the relays
can “protect” linear combinations of messages rather than decode individual messages.
The insights gained from the finite field model were then applied to the Gaussian case
of the sTTRC where we considered a slightly restricted channel model. In particular no
unequal power constraints were allowed at the device nodes. It was shown that with this
restriction the Gaussian case is very similar to the binary symmetric case by converting
the continuous channel to an MLAN channel. The continuous counterpart of nested linear
codes are nested Voronoi codes. With these two ingredients we derived an achievable rate
region which is within 1/2 bit per dimension of the capacity region for each user. The gap
to capacity vanishes for fixed noise variances and increasing node power.
As a last point, we would like to address a few topics that might be interesting for future
work. One possible extension would be to study the bidirectional message exchange via
L relays. It seems reasonable to assume that, for the case with equal power constraints
at the nodes and full separation, it should possible to generalize the results by using a
similar block transmission strategy and nested codes. However, it might be difficult to
obtain closed form expressions for the relay signals and therefore a detailed analysis may
be cumbersome. Another interesting topic for investigation is the performance of the
lattice based strategies at low SNR. In the comparison chapter it was illustrated that for
the symmetric case of the Gaussian sTRC no positive rate can be achieved using lattices
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below a certain SNR threshold and it remains an open question why this is the case.
In [16] the authors state that “several groups have unsuccessfully tried to find a lattice
scheme that can attain the upper bound” (with respect to the symmetric case). It is not
clear whether the shortcoming of the lattice based schemes, i.e. the poor performance at
low SNR, stems from the particular decoding scheme that is used – in this case lattice
decoding – or from other factors. In order to partially resolve this question the authors
in [6] considered minimum angle decoding as an alternative to lattice decoding. The
analysis revealed that the achievable rates assuming this decoding method are identical to
the rates for lattice decoding, suggesting that the underlying problem is of a more general
nature.
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APPENDIX A

Linear MMSE Estimation

Let Y = X + Z where Z ∼ N (0, σ2I) and X is independent of Z with average power P .
Let αY denote the linear MMSE estimator of X given Y . Note that the estimation error
(or effective noise) is given by Z̃ = X − αY = (α− 1)X + αZ which has average power

1
n

E
[
||Z̃||2

]
= (α− 1)2P + α2σ2. (A.1)

Minimizing (A.1) with respect to α results in

α∗ = P

P + σ2 . (A.2)

The effective noise power for this choice of α is given by

1
n

E
[
||Z̃||2

]
α=α∗

= Pσ2

P + σ2 . (A.3)

In the following the scaling factors for the linear MMSE estimators that are used for the
relaying strategies are calculated using (A.2) and (A.3).

Modulo-and-forward (Section 3.3)

User a

The effective noise power is given by (cp. (3.36)):

Z̃a = (αhar
√
θ − 1)Xb + αZr + (βahra

√
µ− 1)X ′r + βaZa

= Z ′a + Z ′′a. (A.4)

73



Appendix A. Linear MMSE Estimation

We have

α∗ = P

P + 1
θh2

ar

= θh2
arP

θh2
arP + 1 (A.5)

and

β∗a = P

P + 1
µh2

ra

= µh2
raP

µh2
raP + 1 (A.6)

and therefore
1
n

E
[
||Z̃a||2

]
= 1
n

E
[
||Z̃ ′a||2

]
+ 1
n

E
[
||Z̃ ′′a||2

]
= P

γh2
arP + 1 + P

µh2
raP + 1 (A.7)

User b

The effective noise power is given by (cp. (3.39)):

Z̃b = (αhar
√
θ − 1)X ′a + αZr + (βbhrb

√
µ− 1)X ′r + βbZb.

= Z ′b + Z ′′b . (A.8)

We have the same α∗ as for user a and

β∗b = P

P + 1
µh2

rb

= µh2
rbP

µh2
rbP + 1

(A.9)

and therefore
1
n

E
[
||Z̃b||2

]
= 1
n

E
[
||Z̃ ′b||2

]
+ 1
n

E
[
||Z̃ ′′b ||2

]
= P

γh2
arP + 1 + P

µh2
rbP + 1

(A.10)

Proof (Section 3.4)

Relay r

The effective noise power is given by (cp. (3.54)):

Z̃r = (αhbr − 1)(X ′a + Xb) + αZr. (A.11)

We have

α∗ = 2P
2P + 1

h2
br

= 2h2
brP

2h2
brP + 1

(A.12)

and therefore
1
n

E
[
||Z̃r||2

]
= 2P

2h2
brP + 1

. (A.13)
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APPENDIX B

Notation

B.1. Acronyms

Abbreviation Meaning
AF amplify-and-forward

AWGN additive white Gaussian noise
BPSK binary phase-shift keying
BSC binary symmetric channel
CF compute-and-forward
CSI cannnel state information
DF decode-and-forward
FD full-duplex
HD half-duplex
MF modulo-and-forward
ML maximum likelihood

MLAN modulo-lattice additive noise
MMSE minimum mean square error

NC network coding
PNC physical-layer network coding

SI side information
SNR signal-to-noise ratio
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Abbreviation Meaning
sTRC separated two-way relay channel

sTTRC separated two-way two-relay channel
TRC two-way relay channel

B.2. List of Symbols

Symbol Description
|| · || Euclidean norm
⊕ exclusive or
0 all-zero vector
a device node, first user
α MMSE scaling factor for the relay
b device node, second user
βa MMSE scaling factor for user a
βb MMSE scaling factor for user b
c codeword
C code

C(Λc/Λ) nested lattice code
δa gap to capacity for user a
δb gap to capacity for user b

E [ · ] expectancy operator
ε crossover probability
G normalized second moment of a region
G generator matrix
γ scaling factor, used in the AF strategy
γa scaling factor, used in the AF strategy
γb scaling factor, used in the AF strategy
h channel coefficient

H( · ) binary entropy function
I identity matrix
K noisy lattice point
K̃ noisy lattice point
λ arbitrary lattice point
Λ shaping (or coarse) lattice
Λa coding (or fine) lattice
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B.2. List of Symbols

Symbol Description
Λb coding (or fine) lattice
Λc coding (or fine) lattice
M number of transmission blocks

mod modulo operation
µ power allocation factor for superposition coding
n number of channel uses / dimensions
N normal distribution
P transmit power of a device node

Pr( · ) probability of an event
QΛ( · ) nearest neighbor lattice quantizer
QC( · ) binary quantizer with respect to a linear code C
r device node, relay
r1 device node, first relay in the two-relay setup
r2 device node, second relay in the two-relay setup
Ra information rate from user a to b, in bits per channel use
Rb information rate from user b to a, in bits per channel use

RLattice rate of the nested lattice code
Rsum sum rate
R compact bounding region
Rc capacity region
Rcut cut-set region
RV fundamental Voronoi region of a lattice
R set of real numbers
Rn real Euclidean n-dimensional space
σ2 variance / second moment of a region
σ̃2 effective noise power
θ power allocation factor for superposition coding
u information bit, packet
u information vector
U random dither vector

Unif uniform distribution
V (lattice) codeword
V̂ estimated (lattice) codeword
Vol volume of a region
Wa message of user a
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Symbol Description
Wb message of user b
W message vector
W message set
X channel input variable
X transmitted signal
X̂ estimated signal
X̃ input signal for the MLAN channel
Y channel output variable
Y received signal
Ỹ output signal of the MLAN channel
Z random noise variable
Z random noise vector
Z̃ effective noise vector
Ẑ estimated noise vector
Z set of integer numbers
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